Skip to main content
Log in

Sphingophosphonolipids, phospholipids, and fatty acids from aegean jellyfish Aurelia aurita

  • Articles
  • Published:
Lipids

Abstract

The goal of this study is to elucidate and identify several sphingophosphonolipids from Aurelia aurita, an abundant but harmless Aegean jellyfish, in which they have not previously been described. Total lipids of A. aurita were 0.031–0.036% of fresh tissue, and the lipid phosphorus content was 1.3–1.7% of total lipids. Phosphonolipids were 21.7% of phospholipids and consisted of a major ceramide aminoethyl-phosphonate (CAEP-1; 18.3%), as well as three minor CAEP (II, III, IV) methyl analogs at 1.3, 1.1, and 1.0%, respectively. The remaining phospholipid composition was: phosphatidylcholine, 44.5%, including 36.2% glycerylethers; phosphatidylethanolamine, 18.6%, including 4.5% glycerylethers; cardiolipin, 5.6%; phosphatidylinositol, 2.6%; and lysophosphatidylcholine, 5.0%. In CAEP-1; saturated fatty acids of 14–18 carbon chain length were 70.8% and were combined with 57.3% dihydroxy bases and 23.4% trihydroxy bases. The suite of the three minor CAFP methyl analogs were of the same lipid class based on the head group, but they separated into three different components because of their polarity as follows: CAEP-II and CAEP-III differentiation from the major CAEP-I was mainly due to the increased fatty acid unsaturation and not to a different long-chain base, but the CAEP-IV differentiation from CAEP-I, apart from fatty acid unsaturation, was due to the increased content of hydroxyl groups originated from both hydroxy fatty acids and trihydroxy long-chain bases. Saturated fatty acids were predominant in total (76.7%), polar (83.0%), and neutral lipids (67.6%) of A. aurita. The major phospholipid components of A. aurita were comparable to those previously found in a related organism (Pelagia noctiluca), which can injure humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AEP:

2-aminoethylphosphonic acid

CAEP:

ceramide 2-aminoethylphosphonic acid

CCL:

carbon chain length

CL:

cardiolipin

CMAEF:

ceramide 2-methylaminoethylphosphonic acid

ECL:

equivalent chain length

FA:

fatty acids

GC:

gas chromatography

GPC:

L-α-glycerylphosphorylcholine

GPE:

L-α-glycerylphosphorylethanolamine

GPI:

l-α-glycerylphosphorylinositol

GPnL:

glycerophosphonolipid

HPTLC:

high-performance thin-layer chromatography

LCB:

long-chain base

L-PE:

lyso-PE

L-PC:

lyso-PC

MAEP:

2-methylaminoethylphosphonic acid

MUFA:

monounsaturated fatty acids

NL:

neutral lipids

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PhL:

phospholipid

PI:

phosphatidylinositol

PL:

polar lipids

PnL:

phosphonolipid

PUFA:

polyunsaturated fatty acids

SFA:

saturated fatty acids

SPnGL:

sphingophosphonoglycolipid

SPnL:

sphingophosphonolipid

TDB:

total dihydroxy bases

TL:

total lipids

TLC:

thin-layer chromatography

TMS:

trimethylsilyl

TTB:

total trihydroxy bases

References

  1. Hori, T., and Sugita, M. (1984) Chemistry of Phosphonolipids, in Biochemistry of Natural C-P Compounds (Hori, T., Horiguchi, M., and Hayashi A., eds) pp. 124–144, Maruzen, Tokyo.

    Google Scholar 

  2. Hilderbrand, R.L., and Henderson T.O. (1983) Phosphonic Acids in Nature, in The Role of Phosphonates in Living Systems (Hilderbrand, R.L., ed.), pp. 5–29, CRC Press, Boca Raton.

    Google Scholar 

  3. Bishop, D.G. (1971) The Distribution and Function of Lipids in Cells, in Biochemistry and Methodology of Lipids (Johnson, A.R., and Davenport, J.B., eds.), pp. 425–458, Wiley Interscience, New York.

    Google Scholar 

  4. Hori, T., and Nozawa, Y. (1982) Phosphonolipids, in Phospholipids (Hawthorne, J.N., and Ansell, G.B., eds.), pp. 95–128, Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  5. Joseph, J.D. (1979) Lipid Composition of Marine and Estuarine Invertebrates: Porifera and Cnidaria, Prog. Lipid Res. 18, 1–30.

    Article  PubMed  CAS  Google Scholar 

  6. Rosenberg, H. (1973) Phosphonolipids, in Form and Function of Phospholipids (Ansell, G.B., Hawthorne, J.N., and Dawson, R.M.C., eds.), Vol. 3, pp. 333–344, Elsevier, New York.

    Google Scholar 

  7. Dawson, R.M.C., and Kemp, P. (1967) The Aminoethyl-phonate-Containing Lipids of Rumen Protozoa, J. Biochem. 105, 837–842.

    CAS  Google Scholar 

  8. Mukhamedova, K.S., and Glushenkova, A.I. (2000) Natural Phosphonolipids, Chem. Nat. Compounds 36, 329–341.

    Article  CAS  Google Scholar 

  9. Rouser, G., Kritchevsky, G., Heller, D., and Lieber, E. (1963) Lipid Composition of Beef Brain, Beef Liver, and the Sea Anemone: Two Approaches to Quantitative Fractionation of Complex lipid Mixtures, J. Am. Oil. Chem. Soc. 40, 425–454.

    Google Scholar 

  10. Viswanathan, C.V., and Rosenberg, H.J. (1973) Isolation of Ceramide Monomethylaminoethylphosphonate from the Lipids of Tetrahymena pyriformis W, J. Lipid Res. 14, 327–330.

    PubMed  CAS  Google Scholar 

  11. Ferguson, K.A., Conner, R.L., Mallory, F.B., and Mallory, C.W. (1972) α-Hydroxy Fatty Acids in Sphingolipids of Tetrahymena, Biochim. Biophys. Acta 270, 111–116.

    PubMed  CAS  Google Scholar 

  12. Adosraku, R.K., Smith, J.D., Nicolaou, A., and Gibbons, W.A. (1996) Tetrahymena thermophila: Analysis of Phospholipids and Phosphonolipids by High-Field 1H-NMR, Biochim. Biophys. Acta 1299, 167–174.

    PubMed  Google Scholar 

  13. Sugita, M., Fukunaga, Y., Ohkawa, K., Nozawa, Y., and Hori, T. (1979) Structural Components of Sphingophosphonolipids from the Ciliated Protozoan Tetrahymena pyriformis WH-14, J. Biochem. 86, 281–288.

    PubMed  CAS  Google Scholar 

  14. Hori, T., Sugita, M., and Itasaka, O. (1969) Biochemistry of Shellfish Lipids. X. Isolation of a Sphingolipid Containing 2-Monomethylaminoethylphosphonic Acid from Shellfish, J. Biochem. 65, 451–457.

    PubMed  CAS  Google Scholar 

  15. Matsubara, T. (1975) Distribution of the Dienic Long Chain Bases in Shell-Fish Sphingophosphonolipids, Chem. Phys. Lipids 14, 247–259.

    Article  CAS  Google Scholar 

  16. Joseph, J.D. (1982) Lipid Composition of Marine and Estuarine Invertebrates. Part II: Mollusca, Prog. Lipid Res. 21, 109–153.

    Article  PubMed  CAS  Google Scholar 

  17. Stavrakakis, H.J., Mastronicolis, S.K., and Kapoulas, V.M. (1989) Lipid Composition and Structural Studies on Lipids from the Land Snail Eobania vermiculata, Z.Naturforsch. 44c, 597–608.

    Google Scholar 

  18. Matsubara, T., Morita, M., and Hayashi, A. (1990) Determination of the Presence of Ceramide Aminoethylphosphonate and Ceramide N-methylaminoethylphosphonate in Marine Animals by Fast Atom Bombardment Mass Spectrometry, Biochim. Biophys. Acta 1042, 280–286.

    PubMed  CAS  Google Scholar 

  19. Dembitsky, V.M., Kashin, A.G., and Stefanov, K. (1992) Comparative Investigation of Phospholipids and Fatty Acids of Freshwater Molluses from the Volga River Basin, Comp. Biochem. Physiol. 102B, 193–198.

    Google Scholar 

  20. Dembitsky, V.M., Rezanka, T., and Kashin, A.G. (1994) Comparative Study of the Endemic FreshWater Fauna of Lake Baikal—IV. Phospholipid and Fatty Acid Compositions of Two Gastropod Molluses of the Genus Valvata. Comp. Biochem. Physiol. 107B, 325–330.

    CAS  Google Scholar 

  21. Kariotoglou, D.M., and Mastronicolis, S.K. (1998) Phosphono-lipids in the Mussel Mytilus galloprovincialis, Z. Naturforsch. 53c, 888–896.

    Google Scholar 

  22. Nakhel, I.C., Mastronicolis, S.K., and Miniadis-Meimaroglou, S. (1988) Phospho- and Phosphonolipids of the Aegean Pelagic Scyphomedusa Pelagia noctiluca, Biochim. Biophys. Acta 958, 300–307.

    CAS  Google Scholar 

  23. Karlsson, K.A., and Samuelsson, B.E. (1974) The Structure of Ceramide Aminoethylphosphonate from the Sea Anemone Metridium senile, Biochim. Biophys, Acta 337, 204–213.

    CAS  Google Scholar 

  24. Araki, S., Abe, S., Satake, M., Hayashi, A., Kon, K., and Ando, S. (1991) Novel Phosphonoglycosphingolipids Containing Pyruvylated Galactose from the Nervous System of Aplysia kurodai, Eur. J. Biochem. 198, 689–695.

    Article  PubMed  CAS  Google Scholar 

  25. Yamaguchi, Y., Ohta, M., and Hayashi, A. (1992) Structural Elucidation of a Novel Phosphonoglycosphingolipid in Eggs of the Sea Hare Aplysia juliana. Biochim. Biophys. Acta 1165, 160–166.

    PubMed  CAS  Google Scholar 

  26. Matsubara, T., and Hayashi, A. (1993) Occurrence of Phosphonotetraglycosyl Ceramide in the Sea Hare Dolabella auricularia, Biochim. Biophys. Acta 1166, 55–63.

    PubMed  CAS  Google Scholar 

  27. Papathanassiou, E., Panayotidis, P., and Anagnostaki, K. (1986) Reproduction and Growth of Aurelia aurita in Elefsis Bay, in Nova Thalassia—Workshop on Jellyfish in the Mediterranean Sea, Vol. 8, Suppl. 2, pp. 83–88. CIMAM-Laboratory of Marine Biology, Department of Biology, University of Trieste, Trieste, Italy.

    Google Scholar 

  28. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  29. Mastronicolis, S.K., German, J.B., and Smith, G.M. (1996) Diversity of the Polar Lipids of the Food-Borne Pathogen Listeria monocytogenes, Lipids 31, 635–640.

    Article  PubMed  CAS  Google Scholar 

  30. Dittmer, J.C., and Lester, R.L. (1964) A Simple, Specific Spray for the Detection of Phospholipids on Thin-Layer Chromatograms, J. Lipids Res. 5, 126–127.

    CAS  Google Scholar 

  31. Stillway, L.W., and Harmon, S.J. (1980) A Procedure for Detecting Phosphonolipids on Thin-Layer Chromatograms, J. Lipid Res. 21, 1141–1143.

    PubMed  CAS  Google Scholar 

  32. Christie, W.W. (1982) Lipid Analysis, 2nd edn., pp. 115–121, Pergamon Press, New York.

    Google Scholar 

  33. Bhat, H.K., and Ansari, A.S. (1989) Improved Separation of Lipid Esters by Thin-Layer Chromatography, J. Chromatogr. 483, 369–378.

    Article  PubMed  CAS  Google Scholar 

  34. Pucsok, J., Kovacs, L., Zalka, A., and Dobo, R. (1988) Separation of Lipids by New Thin Layer Chromatography and Over-Pressured Thin-Layer Chromatography Methods, Clin. Biochem. 21, 81–85.

    Article  PubMed  CAS  Google Scholar 

  35. Jacin, H., and Mishkin, A.R. (1965) Separation of Carbohydrates on Borate-Impregnated Silica Gel G Plates, J. Chromatogr. 18, 170–173.

    Article  PubMed  CAS  Google Scholar 

  36. Hanes, C.S., and Isherwood, F.A. (1949) Separation of the Phosphoric Esters on the Filter Paper Chromatogram, Nature 164, 1107–1112.

    PubMed  CAS  Google Scholar 

  37. Long, C., and Staples, D.A. (1961) Chromatographic Separation of Brain Lipids. Cerebroside and Sulphatide, J. Biochem. 78, 179–185.

    CAS  Google Scholar 

  38. Kapoulas, V.M., Mastronicolis, S.K., Nakhel, I.C., and Stavrakakis, H.J. (1984) A Micromethod for Rapid Quantitative Determination of Phosphonate Phosphorus, Z. Naturforsch. 39c, 249–251.

    CAS  Google Scholar 

  39. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances, Anal. Chem. 28, 350–356

    Article  CAS  Google Scholar 

  40. Snyder, F., and Stephens, N. (1959) A Simplified Spectrophotometric Determination of Ester Group in Lipids, Biochim. Biophys. Acta 34 244–245.

    Article  PubMed  CAS  Google Scholar 

  41. Lauter, C.J., and Trams, E.G. (1962) A Spectrophotometric Determination of Sphingosine, J. Lipid Res. 3, 136–138.

    CAS  Google Scholar 

  42. Hanahan, D.J., and Watts, R. (1961) The Isolation of an a′-Alkoxy-β-acyl-a-glycerophosphoryl Ethanolamine from Bovine Erythrocytes, J. Biol. Chem. 236, 59–60.

    Google Scholar 

  43. Hashmi, M.H., Ali, E., and Umar, M. (1962) Kjeldahl Determination of Nitrogen Without Distillation, Anal. Chem. 34, 988–990.

    Article  CAS  Google Scholar 

  44. Vance, D.E., and Sweely, C.C. (1967) Quantitative Determination of Neutral Glycosyl Ceramides in Human Blood, J. Lipid Res. 8, 621–630.

    PubMed  CAS  Google Scholar 

  45. Matsuura, F. (1977) Phosphonosphingoglycolipid, a Novel Sphingolipid from the Viscera of Turbo cornutus, Chem. Phys. Lipids 19, 223–242.

    Article  PubMed  CAS  Google Scholar 

  46. Sweeley, C.C., Bentley, R., Makita, M., and Wells, W.W. (1963) Gas-Liquid Chromatography of Trimethylsilyl Derivatives of Sugars and Related Substances, J. Am. Chem. Soc. 85, 2497–2507.

    Article  CAS  Google Scholar 

  47. Carter, H.E., and Gaver, R.C. (1967) Branched-Chain Sphingosines from Tetrahymena pyriformis, Biochem. Biophys. Res. Commun. 29, 886–891.

    Article  PubMed  CAS  Google Scholar 

  48. Carter, H.E., and Gaver, R.C. (1967) Improved Reagent for Trimethylsilylation of Sphingolipid Bases, J. Lipid Res. 8, 391–395.

    PubMed  CAS  Google Scholar 

  49. Carter, H.E., and Hirschberg, C.B. (1968) Phytosphingosines and Branched Sphingosines in Kidney, Biochemistry 7, 2296–2300.

    Article  PubMed  CAS  Google Scholar 

  50. Larson, R.J., and Harbison, G.R. (1989) Source and Fate of Lipids in Polar-Gelatinous Zooplankton, Arctic 42, 339–346.

    Google Scholar 

  51. Nelson, M.M., Phleger, C.F., Mooney, B.D., and Nichols, P.D. (2000) Lipids of Gelatinous Antarctic Zooplankton: Cnidaria and Ctenophora, Lipids 35, 551–559.

    PubMed  CAS  Google Scholar 

  52. Hayashi, A., and Matsuura, F. (1973) 2-Hydroxy Fatty Acid- and Phytosphingosine-Containing Ceramide 2-N-Methyl Aminoethylphosphonate from Turbo cornutus, Chem. Phys. Lipids 10, 51–65.

    Article  CAS  Google Scholar 

  53. Matsuura, F., Matsubara, T., and Hayashi, A. (1973) Identification of Molecular Species of Ceramide 2-N-Methyl Aminoethylphosphonates Containing Normal Fatty Acids and Dihydroxy Long Chain Bases from Turbo cornutus, J. Biochem. 74, 49–57.

    PubMed  CAS  Google Scholar 

  54. Komai, Y., Matsukawa, S., and Satake, M. (1973) Lipid Composition of the Nervous Tissue of the Invertebrates Aplysia kurodai (Gastropod) and Cambarus clarki, Biochim. Biophys. Acta 316, 271–281.

    PubMed  CAS  Google Scholar 

  55. Araki, S., Abe, S., Odani, S., Ando, S., Fujii, N., and Satake, M. (1987) Structure of a Triphosphonopentaosylceramide Containing 4-O-Methyl-N-acetylglucosamine from the Skin of the Sea Hare, Aplysia kurodai, J. Biol. Chem. 262, 14141–14145.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia K. Mastronicolis.

About this article

Cite this article

Kariotoglou, D.M., Mastronicolis, S.K. Sphingophosphonolipids, phospholipids, and fatty acids from aegean jellyfish Aurelia aurita . Lipids 36, 1255–1264 (2001). https://doi.org/10.1007/s11745-001-0840-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0840-3

Keywords

Navigation