Skip to main content
Log in

Identification of the pathway of α-oxidation of cerebronic acid in peroxisomes

  • Published:
Lipids

Abstract

Cerebronic acid (2-hydroxytetracosanoic acid), an α-hydroxy very long-chain fatty acid (VLCFA) and a component of cerebrosides and sulfatides, is unique to nervous tissues. Studies were carried out to identify the pathway and the subcellular site involved in the oxidation of cerebronic acid. The results from these studies revealed that cerebronic acid was catabolized by α-oxidation to CO2 and tricosanoic acid (23:0). Studies with subcellular fractions indicated that cerebronic acid was α-oxidized in fractions having particulate bound catalase and enzyme systems for the β-oxidation of VLCFA (e.g., lignoceric acid), suggesting peroxisomes as the subcellular organelle responsible for α-oxidation of cerebronic acid. Etomoxir, an inhibitor of mitochondrial fatty acid oxidation, had no effect on cerebronic acid α-oxidation. Further, cerebronic acid oxidation was found to be dependent on the presence of NAD+ but not FAD, NADPH, ATP, Mg2+, or CoASH. Intraorganellar localization studies indicated that the enzyme system for the α-oxidation of cerebronic acid was associated with the peroxisomal limiting membranes. Studies on cultured fibroblasts from normal subjects and patients with peroxisomal disorders indicated an impairment of α-oxidation of cerebronic acid in cell lines that lack peroxisomes [e.g., Zellweger syndrome (ZS)]. On the other hand, α-oxidation of cerebronic acid was found to be normal in cell lines from X-linked adrenoleukodystrophy, adult Refsum disease, and rhizomelic chondrodysplasia punctata. Our results clearly demonstrate that α-oxidation of α-hydroxy VLCFA (cerebronic acid) is a peroxisomal function and that this oxidation is impaired in ZS. Furthermore, this α-oxidation enzyme system is distinct from the one for the α-oxidation of β-carbon branched-chain fatty acids (e.g., phytanic acid).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco's modified Eagle's minimum essential medium

BCS:

bovine calf serum

MOPS:

3-(N-morpholino)propanesulfonic acid

PBr3 :

phosphorus tribromide

PMSF:

phenylmethylsulfonyl fluoride

RCDP:

rhizomelic chondrodysplasia punctata

RD:

Refsum disease

VLCFA:

very long-chain fatty acid

X-ALD:

X-linked adrenoleukodystrophy

ZS:

Zellweger syndrome

References

  1. Kishimoto, Y., and Radin, N.S. (1963) Occurrence of 2-Hydroxy Fatty Acids in Animal Tissues, J. Lipid Res. 4, 139–143.

    PubMed  CAS  Google Scholar 

  2. Kishimoto, Y., Akanuma, H., and Singh, I. (1979) Fatty Acid α-Hydroxylation and Its Relation to Myelination, Mol. Cell. Biochem. 28, 93–105.

    Article  PubMed  CAS  Google Scholar 

  3. Singh, I., and Kishimoto, Y. (1982) Brain-specific Ceramide Synthesis Activity: Change During Brain Maturation and in Jimpy Mouse Brain, Brain Res. 232, 500–505.

    Article  PubMed  CAS  Google Scholar 

  4. Kunau, W.H., Dommes, V., and Schulz, H. (1995) β-Oxidations of Fatty Acids in Mitochondria, Peroxisomes, and Bacteria: A Century of Continued Progress, Prog. Lipid Res. 34, 267–342.

    Article  PubMed  CAS  Google Scholar 

  5. Singh, I. (1997) Biochemistry of Peroxisomes, Mol. Cell. Biochem. 167, 1–29.

    Article  PubMed  CAS  Google Scholar 

  6. Singh, I., Pahan, K., Dhaunsi, G.S., Lazo, O., and Ozand, P. (1993) Phytanic Acid α-Oxidation, J. Biol. Chem. 268, 9972–9979.

    PubMed  CAS  Google Scholar 

  7. Fulco, A.J., and Mead, J.F. (1961) The Biosynthesis of Lignoceric, Cerebronic and Nervonic Acids, J. Biol. Chem. 236, 2416–2420.

    PubMed  CAS  Google Scholar 

  8. Hajra, A.K., and Radin, N.S. (1963) Biosynthesis of Odd- and Even-numbered Cerebroside Fatty Acids: Evidence for Two Routes, Biochim. Biophys. Acta 70, 97–99.

    Article  PubMed  CAS  Google Scholar 

  9. Levis, G.M., and Mead, J.F. (1964) An α-Hydroxy Acid Decarboxylase in Brain Microsomes, J. Biol. Chem. 239, 77–80.

    PubMed  CAS  Google Scholar 

  10. Singh, I., Moser, A.N., Goldfischer, S., and Moser, H.W. (1984) Lignoceric Acid Is Oxidized in the Peroxisomes: Implications for the Zellweger Cerebro-hepato-renal Syndrome and Adrenoleukodystrophy, Proc. Natl. Acad. Sci. USA 81, 4203–4207.

    Article  PubMed  CAS  Google Scholar 

  11. Wanders, R.J., van Roermund, C.W.T., van Wijland, M.J.A., Schutgens, R.B.H., Heikoops, J., van den Bosch, H., Schram, A.W., and Tager, J.M. (1987) Peroxisomal Fatty Acid β-Oxidation in Relation to the Accumulation of Very Long Chain Fatty Acids in Cultured Skin Fibroblasts with Zellweger Syndrome and Other Peroxisomal Disorders, J. Clin. Invest. 80, 1778–1783.

    Article  PubMed  CAS  Google Scholar 

  12. Mihalik, S.J., Rainville, A.M., and Watkins, P.A. (1995) Phytanic Acid α-Oxidation in Rat Liver Peroxisomes: Production of α-Hydroxyphytanoyl-CoA and Formate Is Enhanced by Dioxygenase Cofactors, Eur. J. Biochem. 232, 545–551.

    Article  PubMed  CAS  Google Scholar 

  13. Sandhir, R., Khan, M., Chahal, A., and Singh, I. (1998) Localization of Nervonic Acid β-Oxidation in Human and Rodent Peroxisomes: Impaired Oxidation in Zellweger Syndrome and X-Linked Adrenoleukodystrophy, J. Lipid Res. 39, 2161–2171.

    PubMed  CAS  Google Scholar 

  14. Sweet, R.S., and Estes, F.L. (1956) 2-Hexadecenoic Acid and Related Compounds, J. Org. Chem. 21, 1426–1429.

    Article  CAS  Google Scholar 

  15. Lazo, O., Contreras, M., Hashmi, M., Stanley, W., Irazu, C., and Singh, I. (1988) Peroxisomal Lignoceroyl-CoA Ligase Deficiency in Childhood Adrenoleukodystrophy and Adrenomyeloneuropathy, Proc. Natl. Acad. Sci. USA 85, 7647–7651.

    Article  PubMed  CAS  Google Scholar 

  16. McCarthy, K., and DeVellis, J. (1980) Preparation of Separate Astroglial and Oligodendroglial Cell Cultures from Rat Cerebral Tissue, J. Cell. Biol. 85, 890–902.

    Article  PubMed  CAS  Google Scholar 

  17. Lazo, O., Contreras, M., and Singh, I. (1991) Effect of Ciprofibrate on the Activation and Oxidation of Very Long Chain Fatty Acids, Mol. Cell. Biochem. 100, 159–167.

    Article  PubMed  CAS  Google Scholar 

  18. Baudhuin, P., Beaufy, Y., Rahman Li, O., Sellinger, Z., Wattiaux, R., Jacques, P., and de Duve, C. (1964) Tissue Fractionation Studies: Intracellular Distribution of Monoamine Oxidase, Aspartate Aminotransferase, Alanine Aminotransferase, D-Amino Acid Oxidase and Catalase in Rat Liver Tissue, Biochem J. 92, 179–184.

    PubMed  CAS  Google Scholar 

  19. Coopertein, S.J., and Lazarow, A. (1951) A Microspectrophotometric Method for the Determination of Cytochrome Oxidase, J. Biol. Chem. 189, 665–670.

    Google Scholar 

  20. Beaufay, H., Amar-Cotesec, A., Feytmans, E., Thines-Sempoux, D., Wibo, M., Robbi, M., and Berthet, J. (1974) Analytical Study of Microsomes and Isolated Subcellular Membranes from Rat Liver, J. Cell Biol. 61, 188–200.

    Article  CAS  Google Scholar 

  21. Singh, I., Singh, R., Bhushan, A., and Singh, A.K. (1985) Lignoceroyl-CoA Ligase Activity in Rat Brain Microsomal Fraction: Topographical Localization and Effect of Detergents and α-Cyclodextrin, Arch. Biochem. Biophys. 236, 418–426.

    Article  PubMed  CAS  Google Scholar 

  22. Singh, I., Lazo, O., Kalipada, P., and Singh, A.K. (1992) Phytanic Acid α-Oxidation in Human Skin Fibroblasts, Biochim. Biophys. Acta 1180, 221–224.

    PubMed  CAS  Google Scholar 

  23. Singh, I., and Kishimoto, Y. (1983) Effect of Cyclodextrin and the Solubilization of Lignoceric Acid, Ceramide, and Cerebroside, and on the Enzymatic Reactions Involving These Compounds, J. Lipid Res. 24, 662–665.

    PubMed  CAS  Google Scholar 

  24. Fujiki, Y., Fowler, S., Shio, H., Hubbard, A.L., and Lazarow, P.B. (1982) Polypeptide and Phospholipid Composition of the Membrane of Rat Liver Peroxisomes: Comparison with Endoplasmic Reticulum and Mitochondrial Membranes, J. Cell Biol. 93, 103–110.

    Article  PubMed  CAS  Google Scholar 

  25. Akanuma, H., and Kishimoto, Y. (1979) Synthesis of Ceramides and Cerebrosides Containing Both α-Hydroxy and Nonhydroxy Fatty Acids from Lignoceroyl-CoA by Rat Brain Microsomes, J. Biol. Chem. 254, 1050–1056.

    PubMed  CAS  Google Scholar 

  26. Mead, J.F., and Levis, G.M. (1963) A 1 Carbon Degradation of the Long Chain Fatty Acids of Brain Sphingolipids, J. Biol. Chem. 238, 1634–1636.

    PubMed  CAS  Google Scholar 

  27. Lippel, K., and Mead, J.F. (1968) Alpha-oxidation of 2-Hydroxystearic Acid in vitro, Biochim. Biophys. Acta 152, 669–680.

    PubMed  CAS  Google Scholar 

  28. Verhoeven, N.M., Wanders, R.J.A., Poll-The, B.T., Saudubray, J.-M., and Jakobs, C. (1998) The Metabolism of Phytanic Acid and Pristanic Acid in Man: A Review, J. Inher. Metab. Dis. 21, 697–728.

    Article  PubMed  CAS  Google Scholar 

  29. Wanders, R.J.A., van Grunsven, E.G., and Jansen, G.A. (2000) Lipid Metabolism in Peroxisomes: Enzymology, Functions and Dysfunctions of the Fatty Acid α- and β-Oxidation Systems in Humans, Biochem. Soc. Trans. 28 (part 2), 141–149.

    PubMed  CAS  Google Scholar 

  30. Pahan, K., Khan, M., and Singh, I. (1996) Phytanic Acid Oxidation: Normal Activation and Transport Yet Defective α-Hydroxylation of Phytanic Acid in Peroxisomes from Refsum Disease and Rhizomelic Chondrodysplasia Punctata, J. Lipid Res. 37, 1137–1143.

    PubMed  CAS  Google Scholar 

  31. Mihalik, S.J., Morrell, J.C., Kim, D., Sacksteder, K.A., and Watkins, P.A. (1997) Identification of PAHX, a Refsum Disease Gene, Nature Genet. 17, 185–189.

    Article  PubMed  CAS  Google Scholar 

  32. Jansen, G.A., Ofman, R., Ferdinandusse, S., Ijlst, L., Muijsers, A.O., Skjeldal, O.H., Stokke, O., Jakobs, C., Besley, G.T.N., Wraith, J.E., et al. (1997) Refsum Disease is Caused by Mutations in the Phytanoyl-CoA Hydroxylase Gene, Nature Genet. 17, 190–193.

    Article  PubMed  CAS  Google Scholar 

  33. Chahal, A., Khan, M., Pai, S.G., Barbosa, E., and Singh, I. (1998) Restoration of Phytanic Acid Oxidation in Refsum Disease Fibroblasts from Patients with Mutations in the Phytanoyl-CoA Hydroxylase Gene, FEBS Lett. 429, 119–122.

    Article  PubMed  CAS  Google Scholar 

  34. Braverman, N., Steel, G., Obie, C., Moser, A., Moser, H., Gould, S.J., and Valle, D. (1997) Human PEX7 Encodes the Peroxisomal PTS2 Receptor and is Responsible for Rhizomelic Chondrodysplasia Punctata, Nature Genet. 15, 369–375.

    Article  PubMed  CAS  Google Scholar 

  35. Ten Brink, H.J., Schor, D.S.M., Kok, R.M., Poll-The, B.T., Wanders, R.J.A., and Jacobs, C. (1992) Phytanic Acid Alphaoxidation: Accumulation of 2-Hydroxyphytanic Acid and Absence of 2-Oxophytanic Acid in Plasma from Patients with Peroxisomal Disorders, J. Lipid Res. 33, 1449–1457.

    PubMed  Google Scholar 

  36. Wanders, R.J., van Roermund, C.W., Schor, D.S., ten Brink, H.J., and Jakobs, C. (1994) 2-Hydroxyphytanic Acid Oxidase Activity in Rat and Human Liver and Its Deficiency in the Zellweger Syndrome, Biochim. Biophys. Acta 1227, 177–182.

    PubMed  Google Scholar 

  37. Harper, D.R., Gilbert, R.L., Oconnor, T.J., Kinchington, D., Mahmood, N., Mcilhinney, R.A.J., and Jeffries, D.J. (1996) Antiviral Activity of 2-Hydroxy Fatty Acids, Antiviral Chem. Chemother. 7, 138–141.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inderjit Singh.

About this article

Cite this article

Sandhir, R., Khan, M. & Singh, I. Identification of the pathway of α-oxidation of cerebronic acid in peroxisomes. Lipids 35, 1127–1133 (2000). https://doi.org/10.1007/s11745-000-0628-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0628-5

Keywords

Navigation