Skip to main content

Fatty Acid Oxidation in Peroxisomes: Enzymology, Metabolic Crosstalk with Other Organelles and Peroxisomal Disorders

  • Chapter
  • First Online:
Peroxisome Biology: Experimental Models, Peroxisomal Disorders and Neurological Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1299))

Abstract

Peroxisomes play a central role in metabolism as exemplified by the fact that many genetic disorders in humans have been identified through the years in which there is an impairment in one or more of these peroxisomal functions, in most cases associated with severe clinical signs and symptoms. One of the key functions of peroxisomes is the β-oxidation of fatty acids which differs from the oxidation of fatty acids in mitochondria in many respects which includes the different substrate specificities of the two organelles. Whereas mitochondria are the main site of oxidation of medium-and long-chain fatty acids, peroxisomes catalyse the β-oxidation of a distinct set of fatty acids, including very-long-chain fatty acids, pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid. Peroxisomes require the functional alliance with multiple subcellular organelles to fulfil their role in metabolism. Indeed, peroxisomes require the functional interaction with lysosomes, lipid droplets and the endoplasmic reticulum, since these organelles provide the substrates oxidized in peroxisomes. On the other hand, since peroxisomes lack a citric acid cycle as well as respiratory chain, oxidation of the end-products of peroxisomal fatty acid oxidation notably acetyl-CoA, and different medium-chain acyl-CoAs, to CO2 and H2O can only occur in mitochondria. The same is true for the reoxidation of NADH back to NAD+. There is increasing evidence that these interactions between organelles are mediated by tethering proteins which bring organelles together in order to allow effective exchange of metabolites. It is the purpose of this review to describe the current state of knowledge about the role of peroxisomes in fatty acid oxidation, the transport of metabolites across the peroxisomal membrane, its functional interaction with other subcellular organelles and the disorders of peroxisomal fatty acid β-oxidation identified so far in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    Article  PubMed  Google Scholar 

  2. Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci 73:2043–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown FR, van Duyn MAS, Moser AB, Schulman JD, Rizzo WB, Snyder RD, Murphy JV, Kamoshita S, Migeon CJ (1982) Adrenoleukodystrophy: effects of dietary restriction of very long chain fatty acids and of administration of carnitine and clofibrate on clinical status and plasma fatty acids. Johns Hopkins Med J 151:164–172

    PubMed  Google Scholar 

  4. Heymans HS, Schutgens RB, Tan R, van den Bosch H, Borst P (1983) Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature 306:69–70

    Article  CAS  PubMed  Google Scholar 

  5. Wanders RJA, Waterham HR (2006) Biochemistry of Mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  CAS  PubMed  Google Scholar 

  6. Van Veldhoven PP, Just WW, Mannaerts GP (1987) Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming protein. J Biol Chem 262:4310–4318

    Article  PubMed  Google Scholar 

  7. Verleur N, Wanders RJ (1993) Permeability properties of peroxisomes in digitonin-permeabilized rat hepatocytes. Evidence for free permeability towards a variety of substrates. Eur J Biochem 218:75–82

    Article  CAS  PubMed  Google Scholar 

  8. Antonenkov VD, Sormunen RT, Hiltunen JK (2004) The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro. J Cell Sci 117:5633–5642

    Article  CAS  PubMed  Google Scholar 

  9. Antonenkov VD, Hiltunen JK (2006) Peroxisomal membrane permeability and solute transfer. Biochim Biophys Acta 1763:1697–1706

    Article  CAS  PubMed  Google Scholar 

  10. Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirilä PL, Bergmann U, Sormunen RT, Weckström M, Benz R, Hiltunen JK (2009) Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane. PLoS One 4:e5090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mindthoff S, Grunau S, Steinfort LL, Girzalsky W, Hiltunen JK, Erdmann R, Antonenkov VD (2016) Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels. Biochim Biophys Acta, Mol Cell Res 1863:271–283

    Article  CAS  PubMed  Google Scholar 

  12. van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14:3480–3486

    Article  PubMed  PubMed Central  Google Scholar 

  13. Verleur N, Hettema EH, van Roermund CW, Tabak HF, Wanders RJ (1997) Transport of activated fatty acids by the peroxisomal ATP-binding-cassette transporter Pxa2 in a semi-intact yeast cell system. Eur J Biochem 249:657–661

    Article  CAS  PubMed  Google Scholar 

  14. van Roermund CWT (1998) Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions. EMBO J 17:677–687

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wolvetang EJ, Tager JM, Wanders RJ (1990) Latency of the peroxisomal enzyme acyl-CoA:dihydroxyacetonephosphate acyltransferase in digitonin-permeabilized fibroblasts: the effect of ATP and ATPase inhibitors. Biochem Biophys Res Commun 170:1135–1143

    Article  CAS  PubMed  Google Scholar 

  16. Wiesinger C, Kunze M, Regelsberger G, Forss-Petter S, Berger J (2013) Impaired very long-chain acyl-CoA β-oxidation in human X-linked Adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem 288:19269–19279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Roermund CWT, Visser WF, Ijlst L, van Cruchten A, Boek M, Kulik W, Waterham HR, Wanders RJA (2008) The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J 22:4201–4208

    Article  CAS  PubMed  Google Scholar 

  18. van Roermund CWT, Visser WF, IJlst L, Waterham HR, Wanders RJA (2011) Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid β-oxidation. Biochim Biophys Acta Mol Cell Biol Lipids 1811:148–152

    Article  CAS  Google Scholar 

  19. Fourcade S, Ruiz M, Camps C et al (2009) A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. Am J Physiol Endocrinol Metab 296:E211–E221

    Article  CAS  PubMed  Google Scholar 

  20. van Roermund CWT, Ijlst L, Wagemans T, Wanders RJA, Waterham HR (2014) A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids. Biochim Biophys Acta 1841:563–568

    Article  CAS  PubMed  Google Scholar 

  21. Ferdinandusse S, Jimenez-Sanchez G, Koster J et al (2015) A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 24:361–370

    Article  CAS  PubMed  Google Scholar 

  22. Agrimi G, Russo A, Scarcia P, Palmieri F (2012) The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+. Biochem J 443:241–247

    Article  CAS  PubMed  Google Scholar 

  23. Van Veldhoven PP, de Schryver E, Young SG, Zwijsen A, Fransen M, Espeel M, Baes M, Van Ael E (2020) Slc25a17 gene trapped mice: PMP34 plays a role in the peroxisomal degradation of phytanic and pristanic acid. Front Cell Dev Biol 8:144

    Article  PubMed  PubMed Central  Google Scholar 

  24. DeLoache WC, Russ ZN, Dueber JE (2016) Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat Commun 7:11152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Veldhoven PP (2010) Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 51:2863–2895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wanders RJA, Waterham HR, Ferdinandusse S (2016) Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev Biol 3:83

    Article  PubMed  PubMed Central  Google Scholar 

  27. Violante S, Achetib N, van Roermund CWT et al (2019) Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB J 33:4355–4364

    Article  CAS  PubMed  Google Scholar 

  28. Ferdinandusse S, Denis S, van Roermund CWTT, Preece MA, Koster J, Ebberink MS, Waterham HR, Wanders RJAA (2018) A novel case of ACOX2 deficiency leads to recognition of a third human peroxisomal acyl-CoA oxidase. Biochim Biophys Acta 1864:952–958

    Article  CAS  Google Scholar 

  29. Kim JT, Won SY, Kang KW et al (2020) ACOX3 dysfunction as a potential cause of recurrent spontaneous vasospasm of internal carotid artery. Transl Stroke Res 11(5):1041–1051. https://doi.org/10.1007/s12975-020-00779-z

    Article  CAS  PubMed  Google Scholar 

  30. Ferdinandusse S, Denis S, Van Roermund CWT, Wanders RJA, Dacremont G (2004) Identification of the peroxisomal beta-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. J Lipid Res 45:1104–1111

    Article  CAS  PubMed  Google Scholar 

  31. Houten SM, Denis S, Argmann CA, Jia Y, Ferdinandusse S, Reddy JK, Wanders RJA (2012) Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res 53:1296–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ofman R, Dijkstra IME, van Roermund CWT, Burger N, Turkenburg M, van Cruchten A, van Engen CE, Wanders RJA, Kemp S (2010) The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy. EMBO Mol Med 2:90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gronemeyer T, Wiese S, Ofman R et al (2013) The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey. PLoS One 8:e57395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Costello JL, Castro IG, Hacker C et al (2017) ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER. J Cell Biol 216:331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hua R, Cheng D, Coyaud É et al (2017) VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. J Cell Biol 216:367–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferdinandusse S, Falkenberg KD, Koster J et al (2017) ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism. J Med Genet 54:330–337

    Article  CAS  PubMed  Google Scholar 

  37. Shai N, Yifrach E, van Roermund CWT et al (2018) Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact. Nat Commun 9:1761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Al-Saryi NA, Al-Hejjaj MY, van Roermund CWT, Hulmes GE, Ekal L, Payton C, Wanders RJA, Hettema EH (2017) Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae. Sci Rep 7:11868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Baumgart E, Fahimi HD, Stich A, Völkl A (1996) L-lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. Evidence for involvement in intraperoxisomal NADH reoxidation. J Biol Chem 271:3846–3855

    Article  CAS  PubMed  Google Scholar 

  40. Schueren F, Lingner T, George R, Hofhuis J, Dickel C, Gärtner J, Thoms S (2014) Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. elife 3:e03640

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schueren F, Thoms S (2016) Functional translational readthrough: a systems biology perspective. PLoS Genet 12:e1006196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chu B-B, Liao Y-C, Qi W, Xie C, Du X, Wang J, Yang H, Miao H-H, Li B-L, Song B-L (2015) Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161:291–306

    Article  CAS  PubMed  Google Scholar 

  43. Kemp S, Huffnagel IC, Linthorst GE, Wanders RJ, Engelen M (2016) Adrenoleukodystrophy – neuroendocrine pathogenesis and redefinition of natural history. Nat Rev Endocrinol 12:606–615

    Article  CAS  PubMed  Google Scholar 

  44. Huffnagel IC, Dijkgraaf MGW, Janssens GE, van Weeghel M, van Geel BM, Poll-The BT, Kemp S, Engelen M (2019) Disease progression in women with X-linked adrenoleukodystrophy is slow. Orphanet J Rare Dis 14:30

    Article  PubMed  PubMed Central  Google Scholar 

  45. Engelen M, Barbier M, Dijkstra IME et al (2014) X-linked adrenoleukodystrophy in women: a cross-sectional cohort study. Brain 137:693–706

    Article  PubMed  Google Scholar 

  46. Huffnagel IC, van Ballegoij WJC, van Geel BM, Vos JMBW, Kemp S, Engelen M (2019) Progression of myelopathy in males with adrenoleukodystrophy: towards clinical trial readiness. Brain 142:334–343

    Article  PubMed  Google Scholar 

  47. de Beer M, Engelen M, van Geel BM (2014) Frequent occurrence of cerebral demyelination in adrenomyeloneuropathy. Neurology 83:2227–2231

    Article  CAS  PubMed  Google Scholar 

  48. Eichler F, Duncan C, Musolino PL et al (2017) Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med 377:1630–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hubbard WC, Moser AB, Liu AC et al (2009) Newborn screening for X-linked adrenoleukodystrophy (X-ALD): validation of a combined liquid chromatography-tandem mass spectrometric (LC-MS/MS) method. Mol Genet Metab 97:212–220

    Article  CAS  PubMed  Google Scholar 

  50. Sandlers Y, Moser AB, Hubbard WC, Kratz LE, Jones RO, Raymond GV (2012) Combined extraction of acyl carnitines and 26:0 lysophosphatidylcholine from dried blood spots: prospective newborn screening for X-linked adrenoleukodystrophy. Mol Genet Metab 105:416–420

    Article  CAS  PubMed  Google Scholar 

  51. Huffnagel IC, van de Beek M-C, Showers AL et al (2017) Comparison of C26:0-carnitine and C26:0-lysophosphatidylcholine as diagnostic markers in dried blood spots from newborns and patients with adrenoleukodystrophy. Mol Genet Metab 122:209–215

    Article  CAS  PubMed  Google Scholar 

  52. Poll-The BT, Roels F, Ogier H, Scotto J, Vamecq J, Schutgens RB, Wanders RJ, van Roermund CW, van Wijland MJ, Schram AW (1988) A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Am J Hum Genet 42:422–434

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferdinandusse S, Denis S, Hogenhout EM, Koster J, van Roermund CWT, IJlst L, Moser AB, Wanders RJA, Waterham HR (2007) Clinical, biochemical, and mutational spectrum of peroxisomal acyl–coenzyme A oxidase deficiency. Hum Mutat 28:904–912

    Article  CAS  PubMed  Google Scholar 

  54. Wanders RJ, Heymans HS, Schutgens RB, Barth PG, van den Bosch H, Tager JM (1988) Peroxisomal disorders in neurology. J Neurol Sci 88:1–39

    Article  CAS  PubMed  Google Scholar 

  55. Ferdinandusse S, Barker S, Lachlan K, Duran M, Waterham HR, Wanders RJA, Hammans S (2010) Adult peroxisomal acyl-coenzyme A oxidase deficiency with cerebellar and brainstem atrophy. J Neurol Neurosurg Psychiatry 81:310–312

    Article  PubMed  Google Scholar 

  56. Vilarinho S, Sari S, Mazzacuva F et al (2016) ACOX2 deficiency: a disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment. Proc Natl Acad Sci 113:11289–11293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Monte MJ, Alonso-Peña M, Briz O, Herraez E, Berasain C, Argemi J, Prieto J, Marin JJGG (2017) ACOX2 deficiency: an inborn error of bile acid synthesis identified in an adolescent with persistent hypertransaminasemia. J Hepatol 66:581–588

    Article  CAS  PubMed  Google Scholar 

  58. Suzuki Y, Jiang LL, Souri M et al (1997) D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder. Am J Hum Genet 61:1153–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Grunsven EG, van Berkel E, Ijlst L, Vreken P, de Klerk JB, Adamski J, Lemonde H, Clayton PT, Cuebas DA, Wanders RJ (1998) Peroxisomal D-hydroxyacyl-CoA dehydrogenase deficiency: resolution of the enzyme defect and its molecular basis in bifunctional protein deficiency. Proc Natl Acad Sci USA 95:2128–2133

    Article  PubMed  PubMed Central  Google Scholar 

  60. Goldfischer S, Collins J, Rapin I, Neumann P, Neglia W, Spiro AJ, Ishii T, Roels F, Vamecq J, Van Hoof F (1986) Pseudo-Zellweger syndrome: deficiencies in several peroxisomal oxidative activities. J Pediatr 108:25–32

    Article  CAS  PubMed  Google Scholar 

  61. Ferdinandusse S, van Grunsven EG, Oostheim W, Denis S, Hogenhout EM, IJlst L, van Roermund CWT, Waterham HR, Goldfischer S, Wanders RJA (2002) Reinvestigation of peroxisomal 3-ketoacyl-CoA thiolase deficiency: identification of the true defect at the level of d-bifunctional protein. Am J Hum Genet 70:1589–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ferdinandusse S, Denis S, Mooyer PAW et al (2006) Clinical and biochemical spectrum of D-bifunctional protein deficiency. Ann Neurol 59:92–104

    Article  PubMed  Google Scholar 

  63. Pierce SB, Walsh T, Chisholm KM, Lee MK, Thornton AM, Fiumara A, Opitz JM, Levy-Lahad E, Klevit RE, King M-C (2010) Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault syndrome. Am J Hum Genet 87:282–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McMillan HJ, Worthylake T, Schwartzentruber J et al (2012) Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency. Orphanet J Rare Dis 7:90

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lines MA, Jobling R, Brady L et al (2014) Peroxisomal D-bifunctional protein deficiency: three adults diagnosed by whole-exome sequencing. Neurology 82:963–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ferdinandusse S, Ebberink MS, Vaz FM, Waterham HR, Wanders RJA (2016) The important role of biochemical and functional studies in the diagnostics of peroxisomal disorders. J Inherit Metab Dis 39:531–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Setchell KDR, Heubi JE, Bove KE, O’Connell NC, Brewsaugh T, Steinberg SJ, Moser A, Squires RH (2003) Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology 124:217–232

    Article  PubMed  Google Scholar 

  68. Ferdinandusse S, Denis S, Clayton PT et al (2000) Mutations in the gene encoding peroxisomal α-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet 24:188–191

    Article  CAS  PubMed  Google Scholar 

  69. Haugarvoll K, Johansson S, Tzoulis C, Haukanes BI, Bredrup C, Neckelmann G, Boman H, Knappskog PM, Bindoff LA (2013) MRI characterisation of adult onset alpha-methylacyl-coA racemase deficiency diagnosed by exome sequencing. Orphanet J Rare Dis 8:1

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vaz FM, Ferdinandusse S (2017) Bile acid analysis in human disorders of bile acid biosynthesis. Mol Asp Med 56:10–24

    Article  CAS  Google Scholar 

  71. Ferdinandusse S, Kostopoulos P, Denis S et al (2006) Mutations in the gene encoding peroxisomal sterol carrier protein X (SCPx) cause leukencephalopathy with dystonia and motor neuropathy. Am J Hum Genet 78:1046–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Horvath R, Lewis-Smith D, Douroudis K, Duff J, Keogh M, Pyle A, Fletcher N, Chinnery PF (2015) SCP2 mutations and neurodegeneration with brain iron accumulation. Neurology 85:1909–1911

    Article  PubMed  PubMed Central  Google Scholar 

  73. Seedorf U, Brysch P, Engel T, Schrage K, Assmann G (1994) Sterol carrier protein X is peroxisomal 3-oxoacyl coenzyme A thiolase with intrinsic sterol carrier and lipid transfer activity. J Biol Chem 269:21277–21283

    Article  CAS  PubMed  Google Scholar 

  74. Wanders RJ, Denis S, Wouters F, Wirtz KW, Seedorf U (1997) Sterol carrier protein X (SCPx) is a peroxisomal branched-chain beta-ketothiolase specifically reacting with 3-oxo-pristanoyl-CoA: a new, unique role for SCPx in branched-chain fatty acid metabolism in peroxisomes. Biochem Biophys Res Commun 236:565–569

    Article  CAS  PubMed  Google Scholar 

  75. Antonenkov VD, Van Veldhoven PP, Waelkens E, Mannaerts GP (1997) Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty ac. J Biol Chem 272:26023–26031

    Article  CAS  PubMed  Google Scholar 

  76. Abu-Safieh L, Alrashed M, Anazi S et al (2013) Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. Genome Res 23:236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yagita Y, Shinohara K, Abe Y, Nakagawa K, Al-Owain M, Alkuraya FS, Fujiki Y (2017) Deficiency of a retinal dystrophy protein, acyl-CoA binding domain-containing 5 (ACBD5), impairs peroxisomal β-oxidation of very-long-chain fatty acids. J Biol Chem 292:691–705

    Article  CAS  PubMed  Google Scholar 

  78. Argyriou C, D’Agostino MD, Braverman N (2016) Peroxisome biogenesis disorders. Transl Sci Rare Dis 1:111–144

    PubMed  PubMed Central  Google Scholar 

  79. Klouwer FCC, Berendse K, Ferdinandusse S, Wanders RJA, Engelen M, Poll-The BT (2015) Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis 10:151

    Article  PubMed  PubMed Central  Google Scholar 

  80. Klouwer FCC, Huffnagel IC, Ferdinandusse S, Waterham HR, Wanders RJA, Engelen M, Poll-The BT (2016) Clinical and biochemical pitfalls in the diagnosis of peroxisomal disorders. Neuropediatrics 47:205–220

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald J. A. Wanders or Sacha Ferdinandusse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wanders, R.J.A., Vaz, F.M., Waterham, H.R., Ferdinandusse, S. (2020). Fatty Acid Oxidation in Peroxisomes: Enzymology, Metabolic Crosstalk with Other Organelles and Peroxisomal Disorders. In: Lizard, G. (eds) Peroxisome Biology: Experimental Models, Peroxisomal Disorders and Neurological Diseases. Advances in Experimental Medicine and Biology, vol 1299. Springer, Cham. https://doi.org/10.1007/978-3-030-60204-8_5

Download citation

Publish with us

Policies and ethics