Skip to main content
Log in

Wettability Modification of Lignite by Adsorption of Dodecyl Based Surfactants for Inhibition of Moisture Re-adsorption

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

In order to restrain moisture re-adsorption of dried lignite, a series of dodecyl based surfactants with various hydrophilic heads including dodecyltrimethylammonium bromide (DTAB), sodium dodecyl sulfonate (SDS), dodecyl nonaethoxyl ether (C12EO9) and a gemini surfactant (G12-2-12) were used to adsorb on lignite surface for wettability modification. The adsorption isotherms and zeta potential were determined to study the adsorption process. Lagergren-first-order and pseudo-second-order kinetics models were used to simulate the adsorption kinetics. The modified lignite was characterized by FTIR spectroscopy, and the wettability of it was evaluated by the wetting heat and moisture re-adsorption ratio. The results indicate that hydrophilic heads of surfactants play an important role in adsorption mechanisms and structures of their adsorption layers on lignite surface, which are responsible for wettability alteration. Four surfactants produce different effects on restraining moisture re-adsorption of lignite: the effect of cationic surfactants is better and worse for anionic surfactant SDS, while the non-ionic surfactant C12EO9 shows intermediate behavior. But with the formation of double-layer adsorption, hydrophilic headgroups of surfactant face outward, which causes hydrophilicity of lignite to rise again. Combining adsorption situations and wettability modification effects, the relationship between molecular orientation of four surfactants on a lignite surface and wettability reversal of lignite are discussed.

Graphical abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. World Energy Council, World Energy Resources. 2013 Survey. http://www.worldenergy.org/wpcontent/uploads/2013/10/WER_2013_1_Coal.pdf. Accessed 20 Sep 2016.

  2. Yu J, Tahmasebi A, Han Y, Yin F, Li X. A review on water in low rank coals: the existence, interaction with coal structure and effects on coal utilization. Fuel Process Technol. 2013;106:9–20.

    Article  CAS  Google Scholar 

  3. Man C, Liu Y, Zhu X, Che D. Moisture re-adsorption performance of air-dried and hydrothermally dewatered lignite. Energ Fuel. 2014;28:5023–30.

    Article  CAS  Google Scholar 

  4. Sakaguchi M, Laursen K, Nakagawa H, Miura K. Hydrothermal upgrading of loy yang brown coal—effect of upgrading conditions on the characteristics of the products. Fuel Process Technol. 2008;89:391–6.

    Article  CAS  Google Scholar 

  5. Cao M, Song X, Wang J. Adsorption of hexyl-ω-bis (dodecyldimethylammonium bromide) gemini surfactant on silica and its effect on wettability. J Colloid Interf Sci. 2006;300:519–25.

    Article  CAS  Google Scholar 

  6. Maestro A, Guzmán E, Santini E, Ravera F, Liggieri L, Ortega F, Rubio RG. Wettability of silica nanoparticle-surfactant nanocomposite interfacial layers. Soft Matter. 2012;8:837–43.

    Article  CAS  Google Scholar 

  7. Shah KJ, Mishra MK, Shukla AD, Imae T, Shah DO. Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. J Colloid Interf Sci. 2013;407:493–9.

    Article  CAS  Google Scholar 

  8. Koopal LK, Goloub T, Keizer AD, Sidorova MP. The effect of cationic surfactants on wetting, colloid stability and flotation of silica. Colloid Surf A. 1999;151:15–25.

    Article  CAS  Google Scholar 

  9. Hou B, Wang Y, Huang Y. Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants. Appl Surf Sci. 2015;330:56–64.

    Article  CAS  Google Scholar 

  10. Singh BP. The role of surfactant adsorption in the improved dewatering of fine coal. Fuel. 1999;78:501–6.

    Article  CAS  Google Scholar 

  11. Dey S. Enhancement in hydrophobicity of low rank coal by surfactants—a critical overview. Fuel Process Technol. 2012;94:151–8.

    Article  CAS  Google Scholar 

  12. Jia R, Harris GH, Fuerstenau DW. An improved class of universal collectors for the flotation of oxidized and low-rank coal. Int J Miner Process. 2000;58:99–118.

    Article  CAS  Google Scholar 

  13. Crawforda RJ, Mainwaring DE. The influence of surfactant adsorption on the surface characterisation of australian coals. Fuel. 2001;80:313–20.

    Article  Google Scholar 

  14. Esumi K, Meguro K, Honada H. Adsorption of surface active agents on coals. B Chem Soc Jpn. 1982;55:3021–2.

    Article  CAS  Google Scholar 

  15. Aktas Z, Woodburn ET. The adsorption behaviour of nonionic reagents on two low rank british coals. Miner Eng. 1994;7:1115–26.

    Article  CAS  Google Scholar 

  16. Rosen MJ. Relationship of structure to properties in surfactants: III adsorption at the solid–liquid interface from aqueous solution. J Am Oil Chem Soc. 1975;52:431–5.

    Article  CAS  Google Scholar 

  17. Rupprecht H, Gu T. Structure of adsorption layers of ionic surfactants at the solid/liquid interface. Colloid Polym Sci. 1991;269:506–22.

    Article  CAS  Google Scholar 

  18. Chang H, Jia Z, Zhang P, Li X, Gao W, Wei W. Interaction between quaternary ammonium surfactants with coal pitch and analysis surfactants effects on preparing coal pitch water slurry. Colloid Surf A. 2015;471:101–7.

    Article  CAS  Google Scholar 

  19. Liu X, Zhou Y, Long Y, Hong Z. Study on spectrophotometric determination of anionic surfactants using fuchsin basic as the reagents and its application. J Hunan Univ Nat Sci Ed. 2002;12:66–8.

    Google Scholar 

  20. Yang C, Zeng Q, Yang H, Zou M. Spectrophotometric determination of some polyoxyethylene non-ionic surfactants and its application. Chin J Anal Chem. 2006;34:642–6.

    Article  CAS  Google Scholar 

  21. Weston JS, Jentoft RE, Grady BP, Resasco DE, Harwell JH. Silica nanoparticle wettability: characterization and effects on emulsion properties. Ind Eng Chem Res. 2015;54:4274–84.

    Article  CAS  Google Scholar 

  22. Zhang H, Wang F. Analysis of surface wettability of synthetic magnetite. J Wuhan Univ Techno Sci Ed. 2014;29:679–83.

    Article  CAS  Google Scholar 

  23. Elsherbiny AS, Salem MA, Ismail AA. Influence of the alkyl chain length of cyanine dyes on their adsorption by Na+ montmorillonite from aqueous solutions. Chem Eng J. 2012;200–202:283–90.

    Article  Google Scholar 

  24. Hassan S, Duclaux L, Leveque JM, Reinert L, Farooq A, Yasin T. Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons. J Environ Manag. 2014;144:108–17.

    Article  CAS  Google Scholar 

  25. Bera A, Kumar T, Ojha K, Mandal A. Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms, kinetics and thermodynamic studies. Appl Surf Sci. 2013;284:87–99.

    Article  CAS  Google Scholar 

  26. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451–65.

    Article  CAS  Google Scholar 

  27. Yu Q, Deng S, Yu G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Res. 2008;42:3089–97.

    Article  CAS  Google Scholar 

  28. Markiewicz M, Mrozik W, Rezwan K, Thöming J, Hupka J, Jungnickel C. Changes in zeta potential of imidazolium ionic liquids modified minerals–implications for determining mechanism of adsorption. Chemosphere. 2013;90:706–12.

    Article  CAS  Google Scholar 

  29. Gao Y, Du J, Gu T. Hemimicelle formation of cationic surfactants at the silica gel-water interface. J Chem Soc Faraday T. 1987;1(83):2671–9.

    Article  Google Scholar 

  30. Giles CH, Macewan TH, Nakhwa SN, Smith D. Studies in adsorption, part XI: a system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc. 1960;0:3973–93.

    Article  CAS  Google Scholar 

  31. Bijsterbosch BH. Characterization of silica surfaces by adsorption from solution. investigations into the mechanism of adsorption of cationic surfactants. J Colloid Interface Sci. 1974;47:186–98.

    Article  CAS  Google Scholar 

  32. Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomenon. Hoboken: John Wiley Sons Inc; 2012.

    Book  Google Scholar 

  33. Kharitonova TV, Ivanova NI, Summ BD. Adsorption of cationic and nonionic surfactants on a SiO2 surface from aqueous solutions. Colloid J. 2005;67:242–8.

    Article  CAS  Google Scholar 

  34. Mishra SK, Panda D. Studies on the adsorption of Brij-35 and CTAB at the coal–water interface. J Colloid Interface Sci. 2005;283:294–9.

    Article  CAS  Google Scholar 

  35. Celik MS. Adsorption of ethoxylated sulfonate and nonionic homologs on coal. J Colloid Interface Sci. 1989;129:428–40.

    Article  CAS  Google Scholar 

  36. Parfitt GD, Rochester CH. Adsorption from solution at the solid–liquid interface. London: Academic Press; 1983.

    Google Scholar 

  37. Somasundaran P, Zhang L. Adsorption of surfactants on minerals for wettability control in improved oil recovery processes. J Petrol Sci Eng. 2006;52:198–212.

    Article  CAS  Google Scholar 

  38. Malilc WU, Jhamb OP. Critical micelle concentration of some polyoxyethylated non-ionic surfactants and the effect of additives. Kolloid Z Z Polym. 1970;242:1209–11.

    Article  Google Scholar 

  39. Salehi M, Johnson SJ, Liang J. Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs. Langmuir. 2008;24:14099–107.

    Article  CAS  Google Scholar 

  40. Xhanari K, Syverud K, Carrasco GC, Paso K, Stenius P. Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose. 2011;18:257–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (21376161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyu Liu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, S. Wettability Modification of Lignite by Adsorption of Dodecyl Based Surfactants for Inhibition of Moisture Re-adsorption. J Surfact Deterg 20, 707–716 (2017). https://doi.org/10.1007/s11743-017-1937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1937-9

Keywords

Navigation