Skip to main content
Log in

Surfactant and Temperature Effects in Tyrosine/Pyridoxine Hydrochloride Systems

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The fluorescence resonance energy transfer (FRET) from tyrosine to pyridoxine hydrochloride in different surfactant solutions and in deionized water has been investigated by using a fluorescence spectroscopic technique. The Stern–Volmer quenching constant, the distance between donor (tyrosine) and acceptor (pyridoxine hydrochloride), and the energy transfer efficiency were obtained using the Stern–Volmer relation and Forster’s theory of nonradiative energy transfer. The data obtained from the measurement reveals that the FRET occurs more effectively in aqueous SDS micellar solution than in CTAB or linear alcohol ethoxylate micellar systems and deionized water. Moreover, the binding constant, number of binding sites, and thermodynamic parameters ∆G, ∆H, ∆S were obtained by studying the tyrosine-pyridoxine hydrochloride interactions at three different temperatures. The decrease in binding constant with temperature reflects the existence of weak interaction between tyrosine and pyridoxine hydrochloride at high temperature. The analysis confirms that van der Waals forces and hydrogen bonding are involved in the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. As definite stoichiometry is maintained between donor and acceptor, an isoemissive point similar to isosbestic point in absorption is observed. So an isoemissive point is a specific wavelength at which total emission of sample does note changes during chemical reaction.

References

  1. Seidel C, Orth A, Greulich K-O (1993) Electronic effects on the fluorescence of tyrosine in small peptides. Photochem Photobiol 58:178–184

    Article  CAS  Google Scholar 

  2. Pal H, Palit DK, Mukherjee T, Mittal P (1990) Some aspects of steady state and time-resolved fluorescence of tyrosine and related compounds. J Photochem Photobiol A Chem 52:391–409. doi:10.1016/1010-6030(90)85018-R

    Article  CAS  Google Scholar 

  3. Wiczk W, Rzeska A, Lukomska J, Stachowiak K, Karolczak J, Malicka J, Lankiewicz L (2001) Mechanism of fluorescence quenching of tyrosine derivatives by amide group. Chem Phys Lett 341:99–106. doi:10.1016/S0009-2614(01)00470-5

    Article  CAS  Google Scholar 

  4. Lukomska J, Rzeska A, Malicka J, Wiczk W (2001) Influence of a substituent on amide nitrogen atom on fluorescence efficiency quenching of Tyr(Me) by amide group. J Photochem Photobiol A Chem 143:135–139. doi:10.1016/S1010-6030(01)00521-4

    Article  CAS  Google Scholar 

  5. Gauduchon P, Whal P (1978) Pulse fluorimetry of tyrosyl peptides. Biophys Chem 8:87–104

    Article  CAS  Google Scholar 

  6. Rehms AA, Callis PR (1993) Two-photon fluorescence excitation spectra of aromatic amino acids. Chem Phys Lett 208:276–282. doi:10.1016/0009-2614(93)89075-S

    Article  CAS  Google Scholar 

  7. Beechem JM, Brand L (1985) Time-resolved fluorescence of proteins. Ann Rev Biochem 54:43–71

    Article  CAS  Google Scholar 

  8. Pearce KN (1975) A fluorescence study of the temperature dependent polymerization of bovine beta casein A1. Eur J Biochem 58:23–29

    Article  CAS  Google Scholar 

  9. Cuomo F, Ceglie A, Lopez F (2011) Temperature dependence of calcium and magnesium induced caseinate precipitation in H2O and D2O. Food Chem 126:8–14. doi:10.1016/j.foodchem.2010.10.021

    Article  CAS  Google Scholar 

  10. Capek I (2002) Fate of excited probes in micellar system. Adv Colloid Interf Sci 97:91–149. doi:10.1016/S0001-8686(01)00049-5

    Article  CAS  Google Scholar 

  11. Gehlen MH, DeSchryer FC (1993) Time-resolved fluorescence quenching in micellar assemblies. Chem Rev 93:199–221. doi:10.1021/cr00017a010

    Article  CAS  Google Scholar 

  12. Hu Y-J, Liu Y, Pi ZB, Qu S-H (2005) Interaction of cromolyn sodium with human serum albumin: a fluorescence quenching study. Bioorg Med Chem 13:6609–6614. doi:10.1016/j.bmc.2005.07.039

    Article  CAS  Google Scholar 

  13. Ghosh SK, Khatua PK, Ghosh JK, Bhattacharya SC (2004) Partitioning of quencher ions in the micellar microenvironment of polyoxyethylene nonyl phenol. Spectrochim Acta Part A 61:395–401. doi:10.1016/j.saa.2004.03.043

    Article  Google Scholar 

  14. Lakowicz J R (2006) Principles of Fluorescence Spectroscopy, 3rd edn. Plenum Press, New York, pp 11, 13, 443–446

  15. De S, Girigoswami A (2004) Fluorescence resonance energy transfer—a spectroscopic probe for organized surfactant media. J Colloid Inter Sci 271:485–495. doi:10.1016/j.jcis.2003.10.021

    Article  CAS  Google Scholar 

  16. Aydin BM, Acar M, Arik M, Onganer Y (2009) The fluorescence resonance energy transfer between dye compounds in micellar media. Dyes Pigm 81:156–160. doi:10.1016/j.dyepig.2008.10.002

    Article  CAS  Google Scholar 

  17. Kozyra KA, Heldt JR, Diehl HA, Heldt J (2002) Electronic energy transfer efficiency of mixed solutions of the donor–acceptor pairs: coumarin derivatives-acridine orange. J Photochem Photobiol A Chem 152:199–205. doi:10.1016/S1010-6030(02)00230-7

    Article  CAS  Google Scholar 

  18. De S, Girigoswami A, Mandal AK (2003) Energy transfer—a tool for probing micellar media. Spectrochim Acta Part A 59:2487–2496. doi:10.1016/S1386-1425(03)00043-X

    Article  Google Scholar 

  19. Cuomo F, Palazzo G, Ceglie A, Lopez F (2009) Quenching efficiency of pyrene fluorescence by nucleotide monophosphates in cationic micelles. J Photochem Photobiol A Chem 202:21–27. doi:10.1016/j.jphotochem.2008.10.028

    Article  CAS  Google Scholar 

  20. Lopez F, Cuomo F, Ceglie A, Ambrosone L, Palazzo G (2008) Quenching and dequenching of pyrene fluorescence by nucleotide monophosphates in cationic micelles. J Phys Chem B 112:7338–7344. doi:10.1021/jp8003344

    Article  CAS  Google Scholar 

  21. Mote US, Bhattar SL, Patil SR, Kolekar GB (2009) Interaction of fluorescein with felodipine: a spectrofluorometric and thermodynamic study. J Sol Chem 38:619–628. doi:10.1007/s10953-009-9397-0

    Article  CAS  Google Scholar 

  22. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683. doi:10.1126/science.283.5408.1676

    Article  CAS  Google Scholar 

  23. Valuer B (2001) Molecular fluorescence: principles and applications. Wiley Press, New York, p 250

    Book  Google Scholar 

  24. Chatterjee S, Nandi S, Bhattacharya SC (2005) Fluorescence resonance energy transfer from Fluorescein to Safranine T in solutions and in micellar medium. J Photochem Photobiol A Chem 173:221–227. doi:10.1016/j.jphotochem.2005.02.006

    Article  CAS  Google Scholar 

  25. More VR, Mote US, Patil SR, Kolekar GB (2009) Spectroscopic studies on the interaction between norfloxacin and p-amino benzoic acid: analytical application on determination of norfloxacin. Spectrochim Acta Part A 74:771–775. doi:10.1016/j.saa.2009.08.016

    Article  CAS  Google Scholar 

  26. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102. doi:10.1021/bi00514a017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GBK and USM thank UGC [Project F.No.32-263/2006 (SR)] for the project and fellowship respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Mote.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mote, U.S., Anbhule, P.V. & Kolekar, G.B. Surfactant and Temperature Effects in Tyrosine/Pyridoxine Hydrochloride Systems. J Surfact Deterg 19, 553–558 (2016). https://doi.org/10.1007/s11743-016-1807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1807-x

Keywords

Navigation