Skip to main content
Log in

Pyramid linear prediction coding for images

  • Published:
Journal of Shanghai University (English Edition)

Abstract

Motivated by wavelet transform, this paper presents a pyramid linear prediction coding (PLPC) algorithm for digitial images. The algorithm outputs the rough contour of an image and a prediction error sequence. In contrast to the conventional linear prediction method, PLPC exhibits very little sensitivity to channel errors and provides a more efficient compression performance. The results of simulations with Lena 512 × 512 and bitrates ranging from 0.17 to 3.2 (lossless)bits/pixel are given to show that the PLPC method is very suitable for the human visual perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baronti S., Casini A., Lotti F. and Alparone L., Content-Driven Differential Encoding of an Enhanced Image Pyramid. Signal Processing: Image Communication, 6, 463–469. (1994)

    Article  Google Scholar 

  2. Burt P. J. and Adelson E. H., The Laplacian Pyramid as a Compact Image Coder. IEEE Trans. Commun., Com-31, 632–640. (1983)

    Google Scholar 

  3. Meer P., Baugher E. S. and Rosenfeld A., Frequency Domain Analysis and Synthesis of Image Pyramid Generating Kernels. IEEE Trans. Pattern Anal. Mach. Intelligence, PAMI-9(4), 512–522. (1987)

    Article  Google Scholar 

  4. Unser M., An Improved Least Squares Laplacian Pyramid for Image Compression. Signal Processing, 27(2), 187–203. (1992)

    Article  MathSciNet  Google Scholar 

  5. Bellifemine F. et al., Combining DCT and Subband Coding into an Intraframe Coder. Signal Processing: Image Commun., 5, 235–248. (1993)

    Article  Google Scholar 

  6. Coppisetti N., Kwatra S. C. and Al-Asmari A. K., Low Complexity Subband Encoding for HDTV Images. IEEE J. on Selected Areas in Commun., 11(1), 77–87. (1993)

    Article  Google Scholar 

  7. Gharavi H. and Tabatabei A., Subband Coding of Chrome and Color Images. IEEE Trans. Circuits and Systems, 35(2), 207–214. (1988)

    Article  Google Scholar 

  8. Irie K. and Kishmoto R., A Study on Perfect Reconstructive Subband Coding. IEEE Trans. Circuits and Systems for Video Technology, 1(1), 42–48. (1991)

    Article  Google Scholar 

  9. Chen K. and Ramabadran T. V., Near-Lossless Compression of Medical Image Through Entropy-Coded DPCM. IEEE Trans. Medical Image, 13(3), 538–548. (1994)

    Article  Google Scholar 

  10. Daubechies I., Orthonormal Bases of Compactly Supported Wavelets. Commun. Pure Appl. Math., 41, 909–996. (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Daubechies I., The Wavelet Transform, Time-Frequency Localization and Signal Analysis. IEEE Trans. Inform. Theory, 36(6), 961–1005. (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grossman A. and Morlet J., Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM, J. Math. Anal., 15(4), 723–736. (1984)

    Article  MathSciNet  Google Scholar 

  13. Mallat S. G., A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 11(7), 674–693. (1989)

    Article  MATH  Google Scholar 

  14. Vetterli M. and Herly C., Wavelets and Filter Banks: Theory and Design. IEEE Trans. Signal Processing, 40(9), 2207–2232. (1992)

    Article  MATH  Google Scholar 

  15. Meyer Y., Wavelets: Algorithm and Applications, Translated by R. D. Ryan, SIAM Philadelphia, 1993.

  16. Feher K., Adavanced Digital Communications: Systems and Signal Processing Techniques, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.

    Google Scholar 

  17. Gao W., Compression Techniques for Multi-media Data, Electronic Industry Publishing House, Beijing, 1994.

    Google Scholar 

  18. Jain A. K., Image Data Compression: A Review. Proc. IEEE, 69(3), 349–389. (1981)

    Article  Google Scholar 

  19. Draft Revised Recommendation H.261-Video code for audio visual service at 64kbits/s”, CCITT, 1990.

  20. MPEG Video Commitee Draft”, MPEG Video CD Editorial Committee, 1990.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Zhu, G., Zhao, F. & Jiang, F. Pyramid linear prediction coding for images. J. of Shanghai Univ. 1, 155–158 (1997). https://doi.org/10.1007/s11741-997-0014-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11741-997-0014-4

Key words

Navigation