Skip to main content
Log in

Fatigue analysis of rolled components considering transient cyclic material behaviour and residual stresses

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Forming processes generally lead to residual stresses. Compressive residual stresses can have a beneficial impact on the fatigue life of components, which is demonstrated here in terms of a skew-rolled hybrid shaft-hub connection. In order to set the basis for a systematic investigation of this effect, a strategy for the evaluation of the influence of residual stresses on the fatigue resistance of formed components is proposed. It involves the determination of the expectable residual stresses through a simulation of the forming process as well as a fatigue analysis. While state-of-the-art fatigue concepts assume unchanging cyclic material behaviour throughout the entire fatigue life of the component, this assumption is not adequate for residual stress-afflicted components. Hence, a generalization to transient cyclic material behaviour with an asymmetry in tension and compression is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Beghini M, Bertini L, Monelli BD, Santus C, Bandini M (2014) Experimental parameter sensitivity analysis of residual stresses induced by deep rolling on 7075–T6 aluminium alloy. Surf Coat Technol 254:175–186. https://doi.org/10.1016/j.surfcoat.2014.06.008

    Article  Google Scholar 

  2. Blasón S, Rodríguez C, Belzunce J, Suárez C (2017) Fatigue behaviour improvement on notched specimens of two different steels through deep rolling, a surface cold treatment. Theor Appl Fract Mech 92:223–228. https://doi.org/10.1016/j.tafmec.2017.08.003

    Article  Google Scholar 

  3. Brinksmeier E, Cammett JT, König W, Leskovar P, Peters J, Tönshoff HK (1982) Residual stresses measurement and causes in machining processes. CIRP Ann 31(2):491–510. https://doi.org/10.1016/S0007-8506(07)60172-3

    Article  Google Scholar 

  4. Bruschi S, Altan T, Banabic D, Bariani PF, Brosius A, Cao J, Ghiotti A, Khraisheh M, Merklein M, Tekkaya AE (2014) Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Ann 63(2):727–749. https://doi.org/10.1016/j.cirp.2014.05.005

    Article  Google Scholar 

  5. Buxbaum O, Lowak H (1983) Zur Steigerung der Schwingfestigkeit durch mechanisch erzeugte Druckeigenspannungen. Materialwissenschaft und Werkstofftechnik 14(12):421–428. https://doi.org/10.1002/mawe.19830141209

    Article  Google Scholar 

  6. Coffin LFJ, Schenectady NY (1954) A study of the effects of cyclic thermal stresses on a ductile metal. Trans Am Soc Mech Eng 76:931–950

    Google Scholar 

  7. Delgado P, Cuesta II, Alegre JM, Daz A (2016) State of the art of Deep Rolling. Precis Eng 46:1–10. https://doi.org/10.1016/j.precisioneng.2016.05.001

    Article  Google Scholar 

  8. Jang DY, Liou JH (1998) Study of stress development in axi-symmetric products processed by radial forging using a 3-D non-linear finite-element method. J Materials Process Technol 74(1):74–82. https://doi.org/10.1016/S0924-0136(97)00252-5

    Article  Google Scholar 

  9. Kloos KH (1979) Eigenspannungen, definition und entstehungsursachen. Materialwissenschaft und Werkstofftechnik 10(9):293–302. https://doi.org/10.1002/mawe.19790100906

    Article  Google Scholar 

  10. Kloos KH (1995) Größeneinfluss. Einfluss der Probengröße auf das Ermüdungsverhalten bauteilähnlicher Kerbproben unter einstufigen und zufallsartigen Beanspruchsabläufen. In: Abschlussbericht Vorhaben Nr. 145-2, vol. 192. Forschungskuratorium Maschinenbau e.V

  11. Kromm A (2011) Umwandlungsverhalten und Eigenspannungen beim Schweißen neuartiger LTT-Zusatzwerkstoffe. BAM-Dissertationsreihe. BAM

  12. Lan J, Feng S, Hua L (2017) The residual stress of the cold rolled bearing race. Procedia Eng 207:1254–1259. https://doi.org/10.1016/j.proeng.2017.10.879

    Article  Google Scholar 

  13. Manson SS (1965) Fatigue: a complex subject—some simple approximations. Exp Mech 5(4):193–226. https://doi.org/10.1007/BF02321056

    Article  Google Scholar 

  14. Masing G (1926) Eigenspannungen und Verfestigung beim Messing. In: Proc. 2nd Int. Cong. of Appl. Mech., pp 332–335

  15. Merklein M, Andreas K, Engel U (2011) Influence of machining process on residual stresses in the surface of cemented carbides. Procedia Eng 19:252–257. https://doi.org/10.1016/j.proeng.2011.11.108

    Article  Google Scholar 

  16. Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 12(3):159–164

    Google Scholar 

  17. Morrow J (1965) Cyclic Plastic Strain Energy and Fatigue of Metals. In: Lazan, B. (ed.) Internal Friction, Damping, and Cyclic Plasticity, pp. 45–45–43. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. https://doi.org/10.1520/STP43764S

  18. Neuber H (1961) Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. J Appl Mech 28(4):544–550. https://doi.org/10.1115/1.3641780

    Article  MathSciNet  MATH  Google Scholar 

  19. Palmgren A (1924) Die lebensdauer von kugellagern. Zeitschrift des Vereins Deutscher Ingenieure 68(14):339–341

    Google Scholar 

  20. Pineau A, McDowell DL, Busso EP, Antolovich SD (2016) Failure of metals II: fatigue. Acta Materialia 107:484–507. https://doi.org/10.1016/j.actamat.2015.05.050

    Article  Google Scholar 

  21. Pintschovius L (1992) Macrostresses, microstresses and stress tensors. In: Hutchings MT, Krawitz AD (eds) Measurement of residual and applied stress using neutron diffraction. Springer, Dordrecht, pp 115–130

    Chapter  Google Scholar 

  22. Radaj D (1990) Design and analysis of fatigue resistant welded structures. In: Welding and Other Joining Technologies. Woodhead Publishing Ltd, Cambridge

  23. Radaj D, Vormwald M (2007) Ermüdungsfestigkeit, 3 edn. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71459-0

  24. Ramberg W, Osgood W (1943) Description of stress-strain curves by three parameters. NACA Technical Note 902

  25. Reiss A, Engel U, Merklein M (2013) Investigation on the influence of manufacturing parameters on the fatigue strength of components. Key Eng Mater 554–557:280–286. https://doi.org/10.4028/www.scientific.net/KEM.554-557.280

    Article  Google Scholar 

  26. Rudkins NT, Modlen GF, Webster PJ (1994) Residual stresses in cold extrusion and cold drawing: a finite element and neutron diffraction study. J Materials Process Technol 45(1):287–292. https://doi.org/10.1016/0924-0136(94)90354-9

    Article  Google Scholar 

  27. Ruud CO (2000) Residual Stress Measurements. In: ASM Handbook, vol. 8, pp. 886–904. ASM International

  28. Smith DJ, Farrahi GH, Zhu WX, McMahon CA (2001) Experimental measurement and finite element simulation of the interaction between residual stresses and mechanical loading. Int J Fatigue 23(4):293–302. https://doi.org/10.1016/S0142-1123(00)00104-3

    Article  Google Scholar 

  29. Smith KN, Topper T, Watson P (1970) A stress-strain function for the fatigue of metals. J Materials 5:767–778

    Google Scholar 

  30. Socie DF (1977) Fatigue-life prediction using local stress-strain concepts. Exp Mech 17:50. https://doi.org/10.1007/BF02326426

    Article  Google Scholar 

  31. Tekkaya AE (1986) Ermittlung von eigenspannungen in der kaltmassivumformung. Springer, Berlin

    Book  Google Scholar 

  32. Tscheuschner T, Schomäcker M, Brosius A (2016) Fügen hybrider rotationsymmetrischer Bauteile durch Profil-Axial-Walzen. Tagungsband zur 23. Sächsische Fachtagung Umformtechnik SFU 2016, 7.-8.12.2016, Dresden

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the Priority Program 2013 “Targeted Use of Forming Induced Residual Stresses in Metal Components” under the grant numbers KA 3309/7-1 and BR 3500/21-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kästner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kühne, D., Guilleaume, C., Seiler, M. et al. Fatigue analysis of rolled components considering transient cyclic material behaviour and residual stresses. Prod. Eng. Res. Devel. 13, 189–200 (2019). https://doi.org/10.1007/s11740-018-0861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-018-0861-9

Keywords

Navigation