Skip to main content
Log in

Tool wear-dependent process analysis by means of a statistical online monitoring system

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Simulating milling processes can provide numerous optimization possibilities regarding process stability and surface quality. In tool and die manufacturing often long-running processes are necessary. In contrast to very time-consuming Finite-Element-based approaches, geometric physically-based simulation systems allow predictions for such processes because of their relatively short runtime. The machining of hardened material and varying engagement conditions between the tool and the workpiece provoke a gradually increasing influence of tool wear on the cutting edges. To consider these alterations while simulating milling processes, different approaches can be used. Because of the complex characteristics of tool wear, methods, which result in an increased simulation runtime, have to be used for the geometric modeling of tool wear. In this paper, a novel approach for monitoring a milling process is presented, which utilizes an online-selection of pre-calculated simulation data to predict the process stability for different states of tool wear. To achieve this, measured data are compared to simulated data, which result from offline simulation conductions for each defined state of tool wear. As tool wear changes when the process is progressing, different simulation data for different states of tool wear have to be selected to ensure a valid stability prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Altintas Y, Aslan D (2017) Integration of virtual and on-line machining process control and monitoring. CIRP Annals - Manufacturing Technology 66(1):349–352. doi:10.1016/j.cirp.2017.04.047

    Article  Google Scholar 

  2. Altintas Y, Yellowly I (1989) In-process detection of tool failure in milling using cutting force models. J Eng Ind 111(2):149–157. doi:10.1115/1.3188744

    Article  Google Scholar 

  3. Altintas Y, Kersting P, Biermann D, Budak E, Denkena B, Lazoglu I (2014) Virtual process systems for part machining operations. CIRP Ann Manuf Technol 63(2):585–605. doi:10.1016/j.cirp.2014.05.007

    Article  Google Scholar 

  4. Bhattacharyya P, Sengupta D, Mukhopadhyay S (2007) Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques. Mech Syst Signal Process 21(6):2665–2683. doi:10.1016/j.ymssp.2007.01.004

    Article  Google Scholar 

  5. Carden EP, Fanning P (2004) Vibration based condition monitoring: a review. Struct Health Monit 3(4):355–377. doi:10.1177/1475921704047500

    Article  Google Scholar 

  6. Denkena B, Dahlmann D, Damm J (2014) Self-tuning of teachless process monitoring systems with multi-criteria monitoring strategy in series production. Proc Technol 15:613–620. doi:10.1016/j.protcy.2014.09.022

    Article  Google Scholar 

  7. Dimla DE (2000) Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods. Int J Mach Tools Manuf 40(8):1073–1098

    Article  Google Scholar 

  8. Elbestawi MA, Chen L, Becze CE, El-Wardany TI (1997) High-speed milling of dies and molds in their hardened state. CIRP Ann Manuf Technol 46(1):57–62. doi:10.1016/S0007-8506(07)60775-6

    Article  Google Scholar 

  9. Fischer C (2009) Runtime and accuracy issues in three-dimensional finite element simulation of machining. Int J Mach Mach Mater 6(1/2):35

    Google Scholar 

  10. Foley JD, van Dam A, Feiner SK (1997) Computer graphics: principles and practice, 2nd edn. The systems programming series. Addison-Wesley Publishing, Reading, Mass. and Menlo Park, Calif. and New York

  11. Freiburg D, Hense R, Kersting P, Biermann D (2016) Determination of force parameters for milling simulations by combining optimization and simulation techniques. J Manuf Sci Eng 138(4):044,502. doi:10.1115/1.4031336

    Article  Google Scholar 

  12. Girardin F, Remond D, Rigal JF (2010) High frequency correction of dynamometer for cutting force observation in milling. J Manuf Sci Eng 132(3):031,002. doi:10.1115/1.4001538

    Article  Google Scholar 

  13. Hess S, Finkeldey F, Wiederkehr P (2016) Elaborated analysis of force model parameters in milling simulations with respect to tool state variations. Proc CIRP 55:83–88, doi:10.1016/j.procir.2016.08.044, 5th CIRP Global Web Conference—Research and Innovation for Future Production (CIRPe 2016)

  14. Jin X, Altintas Y (2012) Prediction of micro-milling forces with finite element method. J Mater Process Technol 212(3):542–552. doi:10.1016/j.jmatprotec.2011.05.020

    Article  Google Scholar 

  15. Karunakaran KP, Shringi R, Ramamurthi D, Hariharan C (2010) Octree-based NC simulation system for optimization of feed rate in milling using instantaneous force model. Int J Adv Manuf Technol 46(5):465–490. doi:10.1007/s00170-009-2107-7

    Article  Google Scholar 

  16. Kersting P, Odendahl S (2013) Capabillities of a process simulation for the analysis of five-axis milling processes in the aerospace industry. Inovcoes Tecnologicas na M@nufatura 10(18 Seminario Internacional de Alta Tecnologia):26–47

  17. Kersting P, Joliet R, Kansteiner M (2015) Modeling and simulative analysis of the micro-finishing process. CIRP Ann Manuf Technol 64(1):321–324. doi:10.1016/j.cirp.2015.04.014

    Article  Google Scholar 

  18. Kienzle O (1952) Die Bestimmung von Kräften und Leistungen an spanenden Werkzeuge und Werkzeugmaschinen. VDI Z 94

  19. Kistler (2009) Multicomponent Dynamometer Type 9257B. https://www.kistler.com/?type=669&fid=60808&model=document&callee=frontend. Accessed 14 May 2017

  20. Kistler (2015) 4-component dynamometer (RCD) Type 9170A. https://www.kistler.com/?type=669&fid=63433&model=document&callee=frontend. Accessed 14 May 2017

  21. Klocke F, Beck T, Hoppe S, Krieg T, Mller N, Nthe T, Raedt HW, Sweeney K (2002) Examples of FEM application in manufacturing technology. J Mater Process Technol 120(1–3):450–457. doi:10.1016/S0924-0136(01)01210-9

    Article  Google Scholar 

  22. Kolar P, Sulitka M, Fojtu P, Falta J, Šindler J (2016) Cutting force modelling with a combined influence of tool wear and tool geometry. Manuf Technol 16(3):524–531

    Google Scholar 

  23. Kuljanic E, Sortino M (2005) TWEM, a method based on cutting forcesmonitoring tool wear in face milling. Int J Mach Tools Manuf 45(1):29–34. doi:10.1016/j.ijmachtools.2004.06.016

    Article  Google Scholar 

  24. Lin SC, Lin RJ (1996) Tool wear monitoring in face milling using force signals. Wear 198(1–2):136–142. doi:10.1016/0043-1648(96)06944-X

    Article  Google Scholar 

  25. Magnevall M, Lundblad M, Ahlin K, Broman G (2012) High frequency measurements of cutting forces in milling by inverse filtering. Mach Sci Technol 16(4):487–500. doi:10.1080/10910344.2012.698970

    Article  Google Scholar 

  26. Merdol SD, Altintas Y (2008) Virtual cutting and optimization of three-axis milling processes. Int J Mach Tools Manuf 48(10):1063–1071. doi:10.1016/j.ijmachtools.2008.03.004

    Article  Google Scholar 

  27. Odendahl S, Kersting P (2013) Higher efficiency modeling of surface location errors by using a multi-scale milling simulation. Proc CIRP 9:18–22. doi:10.1016/j.procir.2013.06.161

    Article  Google Scholar 

  28. Oliaei SNB, Karpat Y (2016) Influence of tool wear on machining forces and tool deflections during micro milling. Int J Adv Manuf Technol 84(9):1963–1980. doi:10.1007/s00170-015-7744-4

    Article  Google Scholar 

  29. Özel T, Altan T (2000) Process simulation using finite element method prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling. Int J Mach Tools Manuf 40(5):713–738. doi:10.1016/S0890-6955(99)00080-2

    Article  Google Scholar 

  30. Powell MJD (2009) The BOBYQA algorithm for bound constrained optimization without derivatives. Technical Report, Department of Applied Mathematics and Theoretical Physics

  31. Rai JK, Xirouchakis P (2008) Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components. Int J Mach Tools Manuf 48(6):629–643. doi:10.1016/j.ijmachtools.2007.11.004

    Article  Google Scholar 

  32. Schumann S, Siebrecht T, Kersting P, Biermann D, Holtermann R, Menzel A (2015) Determination of the Thermal Load Distribution in Internal Traverse Grinding using a Geometric-Kinematic Simulation. Proc CIRP 31:322–327. doi:10.1016/j.procir.2015.03.020, 15th CIRP Conference on Modelling of Machining Operations (15th CMMO)

  33. Sharman A, Dewes RC, Aspinwall DK (2001) Tool life when high speed ball nose end milling Inconel \(718^{\text{ TM }}\). J Mater Process Technol 118(1–3):29–35. doi:10.1016/S0924-0136(01)00855-X

    Article  Google Scholar 

  34. Siebrecht T, Kersting P, Biermann D, Odendahl S, Bergmann J (2015) Modeling of surface location errors in a multi-scale milling simulation system using a tool model based on triangle meshes. Proc CIRP 37:188–192. doi:10.1016/j.procir.2015.08.064

    Article  Google Scholar 

  35. Surmann T, Enk D (2007) Simulation of milling tool vibration trajectories along changing engagement conditions. Int J Mach Tools Manuf 47(9):1442–1448. doi:10.1016/j.ijmachtools.2006.09.030

    Article  Google Scholar 

  36. Teti R, Jemielniak K, ODonnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 59(2):717–739. doi:10.1016/j.cirp.2010.05.010

    Article  Google Scholar 

  37. Tuysuz O, Altintas Y, Feng HY (2013) Prediction of cutting forces in three and five-axis ball-end milling with tool indentation effect. Int J Mach Tools Manuf 66:66–81. doi:10.1016/j.ijmachtools.2012.12.002

    Article  Google Scholar 

  38. Weinert K, Enselmann A, Friedhoff J (1997) Milling simulation for process optimization in the field of die and mould manufacturing. CIRP Ann Manuf Technol 46(1):325–328. doi:10.1016/S0007-8506(07)60835-X

    Article  Google Scholar 

  39. Wiederkehr P, Siebrecht T (2016) Virtual machining: capabilities and challenges of process simulations in the aerospace industry. Proc Manuf 6:80–87. doi:10.1016/j.promfg.2016.11.011

    Google Scholar 

Download references

Acknowledgements

This paper is based on investigations of the project DYNA-Tool: Efficiency improvement in machining of complex parts by optimizing the tool system dynamics, which is kindly supported by the Collective Research Networking (CORNET) and coordinated by the Forschungskuratorium Maschinenbau (FKM) and the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) under Project no. 133 E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Finkeldey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finkeldey, F., Hess, S. & Wiederkehr, P. Tool wear-dependent process analysis by means of a statistical online monitoring system. Prod. Eng. Res. Devel. 11, 677–686 (2017). https://doi.org/10.1007/s11740-017-0773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0773-0

Keywords

Navigation