Skip to main content
Log in

Simulation of vapour keyhole and weld pool dynamics during laser beam welding

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

To help get a deeper insight into highly-complex characteristics of laser beam welding, a mathematical model, closely mapping all prominent phenomena, is useful. Some phenomena such as surface tension induced forces, recoil back pressure, multiple reflections of laser rays and angle dependent energy absorption of hot surfaces are all crucial. Encompassing all those presences, a simulation model has thereby been developed. A laser power transmission model built in conformity with the ray tracing scheme is proposed along with a consistently-adaptive system of time stepping and meshing. The simulation results demonstrate a tailing, deepening weld pool wrapping around an unsettled vapour keyhole forming and collapsing in a fickle manner. Besides, the development pattern of the total laser power literally conveyed to the workpiece seems well matching with the prevalent understanding on broad deep-penetration welding processes. Experimental verification comes in the end. The simulated weld pool shape at its presumably-mature state is compared with that from the laboratory. A continuous-wave multimode Ytterbium-doped fibre laser was employed in the experiment to weld a plain 6-mm-thick stainless steel plate. Apart from the computed weld pool depth appearing somewhat deeper than it is supposed to be, the calculated weld pool width and length are in good agreement with the measured ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(A\) :

Area

\(Ab_0\) :

Absorption coefficient for circularly-polarised laser

\(Ab_{\parallel }\) :

Absorption coefficient for P-polarised laser

\(Ab_{\perp }\) :

Absorption coefficient for S-polarised laser

\(C\) :

Factor

\(C_i\) :

Laser beam focal point coordinates

\(CFL\) :

Courant–Friedrichs–Lewy number

\(c\) :

Mean curvature

\(c_p\) :

Mixture-phase specific heat

\(c_{pl}\) :

Liquid-phase specific heat

\(c_{ps}\) :

Solid-phase specific heat

\(f_l\) :

Liquid mass fraction

\(f_s\) :

Solid mass fraction

\(g_i\) :

Gravitational acceleration vector

\(g_l\) :

Liquid volume fraction

\(g_s\) :

Solid volume fraction

\(h\) :

Mixture-phase enthalpy or axial distance with respect to the laser beam focal point

\(h_{conv}\) :

Convective thermal transfer coefficient

\(h_l\) :

Liquid-phase enthalpy

\(h_p\) :

Axial distance from a reflection point to the laser beam focal point

\(h_s\) :

Solid-phase enthalpy

\(I_i\) :

Striking-ray direction vector

\(I_{LB}\) :

Laser beam power intensity

\(K\) :

Permeability

\(K_0\) :

Permeability coefficient

\(k\) :

Mixture-phase thermal conductivity

\(k_l\) :

Liquid-phase thermal conductivity

\(k_s\) :

Solid-phase thermal conductivity

\(L_m\) :

Latent heat of fusion

\(L_v\) :

Latent heat of evaporation

\(\dot{m}_{evap}\) :

Rate of evaporative mass loss

\(n\) :

Refractive index

\(n_i\) :

Unit normal vector

\(P\) :

Pressure or power

\(P_i\) :

Reflection point coordinates

\(P_{Laser}\) :

Laser beam nominal power

\(P_r\) :

Evaporative recoil back pressure

\(R_i\) :

Reflected-ray direction vector

\(r\) :

Radial distance from a reflection point to the laser beam axis

\(r_0\) :

Laser beam radius

\(S_c\) :

Sulphur concentration

\(T\) :

Temperature

\(T_a\) :

Ambient temperature

\(T_b\) :

Boiling temperature

\(T^0_i,\, T^1_i,\, T^2_i\) :

Triangle vertex coordinates

\(T_l\) :

Liquidus temperature

\(T_s\) :

Solidus temperature

\(t\) :

Time

\(u_i\) :

Laser beam axial unit vector

\(V\) :

Volume

\(v_f\) :

Laser feed rate

\(v_i\) :

Mixture-phase velocity vector or laser beam radial unit vector

\(v^l_i\) :

Liquid-phase velocity vector

\(v^s_i\) :

Solid-phase velocity vector

\(v_{\perp }\) :

Normal component of velocity vector

\(w_0\) :

Laser beam waist radius

\(\beta\) :

Reflection angle

\(\beta _T\) :

Thermal expansion coefficient

\(\gamma\) :

Surface tension coefficient

\(\varDelta t\) :

Timestep size

\(\varDelta x\) :

Element size

\(\varepsilon\) :

Radiative emissivity

\(\theta\) :

Laser beam divergence angle

\(\theta _p\) :

Laser ray divergence angle

\(\kappa\) :

Extinction coefficient

\(\mu _l\) :

Liquid-phase dynamic viscosity

\(\rho\) :

Mixture-phase density

\(\rho _l\) :

Liquid-phase density

\(\rho _s\) :

Solid-phase density

\(\sigma\) :

Stefan–Boltzmann constant

\(\phi\) :

Signed distance (level set) function

References

  1. Dawes C (1992) Laser welding: a practical guide. Abington Publishing, Cambridge

    Book  Google Scholar 

  2. Bley H, Weyand L, Luft A (2007) An alternative approach for the cost-efficient laser welding of zinc-coated sheet metal. CIRP Ann Manuf Technol 56(1):17–20. doi:10.1016/j.cirp.2007.05.006

    Article  Google Scholar 

  3. Ki H, Mohanty PS, Mazumder J (2001) Modelling of high-density laser-material interaction using fast level set method. J Phys D Appl Phys 34(3):364–372. doi:10.1088/0022-3727/34/3/320

    Article  Google Scholar 

  4. Ki H, Mazumder J, Mohanty P (2002) Modeling of laser keyhole welding: part II. Simulation of keyhole evolution, velocity, temperature profile, and experimental verification. Metall Mater Trans A 33(6):1831–1842. doi:10.1007/s11661-002-0191-5

    Article  Google Scholar 

  5. Ki H, Mohanty P, Mazumder J (2005) A numerical method for multiphase incompressible thermal flows with solid–liquid and liquid–vapor phase transformations. Numer Heat Transf B Fundam Int J Comput Methodol 48(2):125–145. doi:10.1080/10407790590963596

    Article  Google Scholar 

  6. Cho JH, Na SJ (2006) Implementation of real-time multiple reflection and fresnel absorption of laser beam in keyhole. J Phys D Appl Phys 39(24):5372–5378. doi:10.1088/0022-3727/39/24/039

    Article  Google Scholar 

  7. Geiger M, Leitz KH, Koch H, Otto A (2009) A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod Eng 3(2):127–136. doi:10.1007/s11740-008-0148-7

    Article  Google Scholar 

  8. Gatzen M, Tang Z (2010) CFD-based model for melt flow in laser beam welding of aluminium with coaxial magnetic field. Phys Proced 5B:317–326. doi:10.1016/j.phpro.2010.08.058

    Article  Google Scholar 

  9. Gatzen M, Tang Z, Vollertsen F (2011) Effect of electromagnetic stirring on the element distribution in laser beam welding of aluminium with filler wire. Phys Proced 12A:56–65. doi:10.1016/j.phpro.2011.03.008

    Article  Google Scholar 

  10. Pang S, Chen L, Zhou J, Yin Y, Chen T (2011) A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding. J Phys D Appl Phys 44(2):025301. doi:10.1088/0022-3727/44/2/025301

    Article  Google Scholar 

  11. Volpp J (2012) Investigation on the influence of different laser beam intensity distributions on keyhole geometry during laser welding. Phys Proced 39:17–26. doi:10.1016/j.phpro.2012.10.009

    Article  Google Scholar 

  12. Volpp J, Vollertsen F (2013) Analytical modeling of the keyhole including multiple reflections for analysis of the influence of different laser intensity distributions on keyhole geometry. Phys Proced 41:460–468. doi:10.1016/j.phpro.2013.03.102

    Article  Google Scholar 

  13. Beckermann C, Viskanta R (1988) Double-diffusive convection during dendritic solidification of a binary mixture. Physicochem Hydrodyn 10(2):195–213

    Google Scholar 

  14. Voller VR, Brent AD, Prakash C, Electric G (1990) Modelling the mushy region in a binary alloy. Appl Math Modell 14(6):320–326

    Article  Google Scholar 

  15. Ni J, Incropera FP (1995) Extension of the continuum model for transport phenomena occurring during metal alloy solidification-I. The conservation equations. Int J Heat Mass Transf 38(7):1271–1284. doi:10.1016/0017-9310(94)00236-O

    Article  MATH  Google Scholar 

  16. Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    Article  MATH  MathSciNet  Google Scholar 

  17. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159. doi:10.1006/jcph.1994.1155

    Article  MATH  Google Scholar 

  18. Mut F, Buscaglia GC, Dari EA (2006) New mass-conserving algorithm for level set redistancing on unstructured meshes. J Appl Mech 73(6):1011. doi:10.1115/1.2198244

    Article  MATH  MathSciNet  Google Scholar 

  19. Ausas RF, Dari EA, Buscaglia GC (2008) A mass-preserving geometry-based reinitialization method for the level set function. Mec Comput 27(1):13–32

    Google Scholar 

  20. Adalsteinsson D, Sethian J (1999) The fast construction of extension velocities in level set methods. J Comput Phys 148(1):2–22. doi:10.1006/jcph.1998.6090

    Article  MATH  MathSciNet  Google Scholar 

  21. Ki H, Mazumder J, Mohanty P (2002) Modeling of laser keyhole welding: part I. Mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution. Metall Mater Trans A 33(6):1817–1830. doi:10.1007/s11661-002-0190-6

    Article  Google Scholar 

  22. Su Y, Li Z, Mills KC (2005) Equation to estimate the surface tensions of stainless steels. J Mater Sci 40(9–10):2201–2205. doi:10.1007/s10853-005-1933-8

    Article  Google Scholar 

  23. Mahrle A, Beyer E (2009) Theoretical aspects of fibre laser cutting. J Phys D Appl Phys 42(17):175507. doi:10.1088/0022-3727/42/17/175507

    Article  Google Scholar 

  24. Han L, Phatak K, Liou F (2004) Modeling of laser cladding with powder injection. Metall Mater Trans B 35(6):1139–1150. doi:10.1007/s11663-004-0070-0

    Article  Google Scholar 

  25. Hu J, Tsai HL (2008) Modelling of transport phenomena in 3D GMAW of thick metals with v groove. J Phys D Appl Phys 41(6):065202. doi:10.1088/0022-3727/41/6/065202

    Article  Google Scholar 

  26. Zhou J, Tsai H (2008) Modeling of transport phenomena in hybrid laser-MIG keyhole welding. Int J Heat Mass Transf 51(17–18):4353–4366. doi:10.1016/j.ijheatmasstransfer.2008.02.011

    Article  MATH  Google Scholar 

  27. Matsuhiro Y, Inaba Y, Ohji T (1993) Mathematical modeling of laser welding with keyhole: study on modeling of laser welding (Part 1). Q J Jpn Weld Soc 11(4):479–483

    Article  Google Scholar 

  28. ThyssenKrupp Materials International GmbH (2013) Material data sheet 1.4301. http://www.s-k-h.com/media/de/Service/Werkstoffblaetter_englisch/Edelstahlrohre/1.4301_engl.pdf. Accessed 14 Sept 2013

  29. Zienkiewicz OC, Codina R (1995) A general algorithm for compressible and incompressible flow—part I. The split, characteristic-based scheme. Int J Numer Methods Fluids 20(8–9):869–885. doi:10.1002/fld.1650200812

    Article  MATH  MathSciNet  Google Scholar 

  30. Hughes TJR, Brooks A (1979) A multidimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD, vol 34. ASME, New York, pp 19–35

    Google Scholar 

  31. Schmidt A, Siebert KG (2005) Design of adaptive finite element software, vol 42., Lecture notes in computational science and engineeringSpringer, Berlin

    MATH  Google Scholar 

  32. Löhner R, Yang C, Oñate E (2007) Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int J Numer Methods Fluids 53(8):1315–1338. doi:10.1002/fld.1244

    Article  MATH  Google Scholar 

  33. Katayama S, Kawahito Y, Mizutani M (2012) Latest progress in performance and understanding of laser welding. Phys Proced 39:8–16. doi:10.1016/j.phpro.2012.10.008

    Article  Google Scholar 

  34. Pastor M, Zhao H, Martukanitz RP, Debroy T (1999) Porosity, underfill and magnesium loss during continuous wave Nd:YAG laser welding of thin plates of aluminum alloys 5182 and 5754. Weld J 78(6):207–216

    Google Scholar 

Download references

Acknowledgments

The author expresses his cordial gratitude for the financial support of the project “Melt Geometry Dependent Distortion” by the Scientific Computing in Engineering (SCiE) programme from the University of Bremen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komkamol Chongbunwatana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chongbunwatana, K. Simulation of vapour keyhole and weld pool dynamics during laser beam welding. Prod. Eng. Res. Devel. 8, 499–511 (2014). https://doi.org/10.1007/s11740-014-0555-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0555-x

Keywords

Navigation