Skip to main content
Log in

Structural analysis method for optimized design of complex kinematic structures using static and dynamic models and application to a robotic walking simulator

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

This paper describes an approach for structural analysis for design improvements of complex, e.g. hybrid, kinematic structures utilizing static and dynamic models. It is suitable to locate improvement potentials in existing mechanisms, facilitate goal-oriented design of new mechanisms or for a simulation-based controller synthesis e.g. a compliance-controller. To receive a model close to reality, mechanical influences, which are commonly neglected in conventional robot models, are analyzed regarding their relevance and if suitable integrated into the model. Investigated effects are the mechanical compliances of links and gears, compliances of the actuators resulting from the control circuits as well as non-linear frictional influences of the actuators. The kinematic and dynamic model is realized as an iterative solution instead of a closed analytic solution with extensive symbolic expressions. This leads to an analysis with clearly arranged aspects, further more the model is suitable for usage in a real-time control. The mechanical influences are analyzed analytically. The derived dynamic modeling is based on the Newton-Euler formulation. The approach is applied to the robotic walking simulator HapticWalker, a device for robot assisted gait rehabilitation. It consists of two identical hybrid parallel-serial manipulators. The forces calculated by the use of the developed model are in a good congruence with measured values. An obviously improved correspondence between measured and calculated values is achieved by the non-linear friction model of the actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Schmidt H, Hesse S, Bernhard R, Krüger J (2005) Hapticwalker—a novel haptic foot device. ACM Trans Appl Perception 2:166–180

    Article  Google Scholar 

  2. Ackermann J (1989) Positionsregelung reibungsbehafteter elastischer Industrieroboter. VDI-Verlag, Dsseldorf

    Google Scholar 

  3. De Luca A, Siciliano B (1991) Closed-form dynamic model of planar multilink lightweight robots. IEEE Trans Syst, Man, Cybernetics 21:826–839

    Article  MathSciNet  Google Scholar 

  4. Denavit J, Hartenberg R (1955) A kinematic notation for lower pair mechanisms based on matrices. ASME J Appl Mech 77:215–221

    MathSciNet  Google Scholar 

  5. Tsai L-W (1999) Robot analysis. Wiley, New York

    Google Scholar 

  6. Merlet J-P (2001) Parallel robots. Kluwer, Dordrecht

    Google Scholar 

  7. Decker K-H (1998) Maschinenelemente. Carl Hanser Verlag, Mnchen

    Google Scholar 

  8. Gomes SCP, Chrétien JP (1992) Dynamic modelling and friction compensation control of a robot manipulator joint. Proceedings of the 1992 IEEE international conference on robotics and automation, pp 1429–1435

  9. Daemi-Avval M (1998) Modellierung und identifikation der dynamik von Industrierobotern für den Einsatz in Regelungen. VDI-Verlag, Dsseldorf

    Google Scholar 

  10. Röhrig C (2003) Zur Lageregelung synchroner Linearmotoren fr hochdynamische Anwendungen unter besonderer Berücksichtigung der Kraftwelligkeit. VDI-Verlag, Dsseldorf

    Google Scholar 

  11. Grotjahn M (2003) Kompensation nicht-linearer dynamischer Effekte bei seriellen und parallelen Robotern zur Erhöhung der Bahngenauigkeit. VDI-Verlag, Düsseldorf

    Google Scholar 

  12. Armstrong-Hélouvry B (1991) Control of Machines with Friction. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  13. Henrichfreise H (1988) Aktive schwingungsdämpfung an einem elastischen knickarmroboter. Master’s thesis, Universität-GH Paderborn

  14. Gross H, Hamann J, Wiegärtner G (2006) Technik elektrischer Vorschubantriebe in der Fertigungs- und Automatisierungstechnik. Publicis KummunikationsAgentur GmbH, GWA, Erlangen

    Google Scholar 

  15. Daemi M, Heimann B (1996) Identification and compensation of gear friction for modeling of robots. Proc of the 11th CISM-IFToMM symposium on the theory and practice of robots and manipulators, pp 89–96

  16. FAG Wälzlager (1999) Kugellager, Rollenlager, Gehäuse, Zubehr. FAG Industrial Bearings AG

  17. Weck M, Brecher C (2006) Werkzeugmaschinen—mechatronische systeme, vorschubantriebe, prozessdiagnose. Springer, Berlin

    Google Scholar 

  18. Poll G (2007) Mechanische Konstruktionselemente 4—Wälzlager. Dubbel: Taschenbuch für den Maschinenbau, 22. Auflage, pp G 74–G 88

  19. Lackmann J (2007) Festigkeitslehre 2—Beanspruchung stabförmiger Bauteile. Dubbel: Taschenbuch für den Maschinenbau, 22. Auflage, p C 18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Brüning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüning, M., Hussein, S., Schmidt, H. et al. Structural analysis method for optimized design of complex kinematic structures using static and dynamic models and application to a robotic walking simulator. Prod. Eng. Res. Devel. 4, 525–534 (2010). https://doi.org/10.1007/s11740-010-0233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-010-0233-6

Keywords

Navigation