Skip to main content
Log in

Nondestructive characterization of the surface integrity of cold surface hardened components

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Nondestructive characterization of surface and subsurface properties is of increasing interest in industry and science. As destructive methods are inadequate for testing large devices (e.g. gear wheels for wind engines) or small series, nondestructive techniques for the assessment of their surface integrity are mandatory. Especially surface hardened components have to be examined in practice, as they tend to show varying properties regarding surface hardness, hardness penetration depth and residual stress profiles. Since the surface integrity has a major influence on the functional performance of components, assessment and monitoring of the surface properties is crucial. In this study, the results of a new technique for surface hardening (cold surface hardening) were investigated for the first time applying an emerging nondestructive measuring method: the photothermal near-surface layer characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lonardo PM, Lucca DA, De Chiffre L (2002) Emerging trends in surface metrology. Ann CIRP 51(2):701–723

    Article  Google Scholar 

  2. Lucca DA, Brinksmeier E, Goch G (1998) Progress in assessing surface and subsurface integrity. Ann CIRP 47(2):669–693

    Article  Google Scholar 

  3. Field M, Kahles JF (1971) Review of surface integrity of machined components. Ann CIRP 20(2):153–163

    Google Scholar 

  4. Novovic D, Dewes RC, Aspinwall DK, Voice W, Bowen P (2004) The effect of machined topography and integrity on fatigue life. Int J Mach Tools Manuf 44(2–3):125–134

    Article  Google Scholar 

  5. Brockhoff T, Brinksmeier E (1999) Grind-hardening: a comprehensive view. Ann CIRP 48(1):255–260

    Article  Google Scholar 

  6. Kristoffersen H, Vomacka P (2001) Influence of process parameters for induction hardening on residual stresses. Mater Des 22(8):637–644

    Google Scholar 

  7. Karpuschewski B (1995) Mikromagnetische Randzonenanalyse geschliffener einsatzgehärteter Bauteile, Dr.-Ing. Dissertation, University of Hannover

  8. Denkena B, Becker JC, Breidenstein B, Spille C (2004) Micromagnetic material characterization of thin steel sheet. Ann Ger Acad Soc Prod Eng (WGP) XI(2):43–46

    Google Scholar 

  9. Goch G, Walther HG, Thwaite EG (1998) Reconstruction of depth-dependent parameter profiles based on photothermal measurements. Ann CIRP 47(1):483–486

    Article  Google Scholar 

  10. Goch G, Schmitz B, Geerkens J, Karpuschewski B, Reigl M, Sprongl P, Ritter R (1999) Review of non-destructive measuring methods for the assessment of surface integrity: a survey of new measuring methods for coatings, layered structures and processed surfaces. Precis Eng 23:9–33

    Article  Google Scholar 

  11. Hirsch T, Wohlfahrt H, Macherauch E (1987) Fatigue strength of case hardened and shot peened gears. In: Wohlfahrt H, Kopp R, Vöhringer O (eds) Shot peening: science, technology, application. DGM Informationsgesellschaft, Oberursel, pp 547–560

    Google Scholar 

  12. Kobayashi M, Matsui T, Murakami Y (1998) Mechanism of creation of compressive residual stress by shot peening. Int J Fatigue 20(5):351–357

    Article  Google Scholar 

  13. Schuhbauer H-G, Bäuerle H, Müller-Stock H-W (1991) Schwingfestigkeitssteigerung schwerer Maschinenbauteile durch Schlagverfestigen. Konferenz-Einzelbericht: Moderne Fertigungs-technologien zur Lebensdauersteigerung, 17. Vortragsveranstaltung des DVM-Arbeitskreises Betriebsfestigkeit, pp 53–64

  14. Hacini L, Van Lê N, Bocher P (2008) Effect of impact energy on residual stresses induced by Hammer Peening of 304L plates. J Mater Process Technol 208(1–3):542–548

    Article  Google Scholar 

  15. El-Axir MH (2000) An investigation into deep rolling. Int J Mach Tools Manuf 40:1603–1617

    Article  Google Scholar 

  16. Röttger K (2003) Walzen hartgedrehter Oberflächen. Dissertation Dr.-Ing. RWTH Aachen, Shaker Verlag, Aachen

  17. Brinksmeier E, Garbrecht M, Meyer D (2008) Cold surface hardening. Ann CIRP 57(1):541–544

    Article  Google Scholar 

  18. Garbrecht M (2006) Mechanisches Randschichthärten in der Fertigung, Dr.-Ing. Dissertation, University of Bremen

  19. Brinksmeier E, Garbrecht M, Meyer D, Dong J (2008) Surface hardening by strain induced martensitic transformation. Ann Ger Acad Soc Prod Eng (WGP) 2:109–116

    Google Scholar 

  20. Meyer D, Dong J, Garbrecht M, Hoffmann F, Brinksmeier E, Zoch H-W (2010) Mechanisch induziertes Härten. J Heat Treat Mater (HTM), accepted for publication in 2010

  21. Goch G, Seidel U, Schmitz B, Reigl M, Walther HG, Lan TTN (1996) Photothermal hardness measurement for shafts. Bearings and Gears. Düsseldorf, VDI Verlag, pp 1031–1042

    Google Scholar 

  22. Reigl M (1997) Methoden zur Quantifizierung photothermischer Signale, Dr.-Ing. Dissertation, Ulm

  23. Kruse D, Prekel H, Goch G (2008) Berührungslose Messung von Einhärtetiefen mittels photothermischer Randzonenanalyse. XXII. Messtechnisches Symposium des Arbeitskreises der Hochschullehrer für Messtechnik e.V. (AHMT). J. Czarske. Aachen, Shaker Verlag, pp 181–192

    Google Scholar 

  24. Goch G, Steiner R, Reick M, Schmitz B (1995) Photothermal detection of surface defects and thermal changes in near-surface layers. In: Balageas, Busse, Carlomagno (eds) Quantitative infrared thermography. Editions Europeenes Thermique et Industrie, Paris, pp 293–297

    Google Scholar 

  25. Kruse D, Prekel H, Goch G, Walther HG (2007) Correlation between hardening depth and thermal parameters based on photothermal measurements. Proc Estonian Acad Sci–Eng 13(4):423–435

    Google Scholar 

  26. Kruse D, Prekel H, Goch G (2006) Automated photothermal detection of burning and hardening depth. 9th International Conference on Infrared Sensors & Systems, Nürnberg, pp 341–346

  27. Mandelis A (1994) Nondestructive evaluation, vol II. Progress in Photothermal and Photoacoustic Science and Technology, PTR Prentice Hall

    Google Scholar 

  28. Goch G, Prekel H, Patzelt S, Ströbel G, Lucca DA, Stock HR, Mehner A (2004) Nondestructive and contactless determination of layer thickness and thermal properties of PVD and sol-gel layers by photothermal methods. Ann CIRP 53(1):471–474

    Article  Google Scholar 

  29. Kruse D, Prekel H, Goch G (2006) Photothermische Randzonenuntersuchung an wärmebehandelten Stählen und Objekten mit thermischer Schädigung. 13. ITG-/GMA-Fachtagung. Freiburg, Berlin, VDE Verlag, pp 173–177

    Google Scholar 

  30. Hertz H (1881) Über die Berührung fester elastischer Körper. J für die reine und angewandte Mathematik 92:156–171

    Google Scholar 

Download references

Acknowledgments

Parts of this work were performed within the framework of the Collaboration Research Center (SFB) 570 “Distortion Engineering”, funded by the German Research Foundation. The authors furthermore thank for the projects’ funding by the Federal Ministry of Education and Research (BMBF) and the assistance of the working committee ‘‘Werkstoffe’’ of the Forschungsvereinigung Antriebstechnik e.V. (FVA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, D., Kruse, D., Bobe, A. et al. Nondestructive characterization of the surface integrity of cold surface hardened components. Prod. Eng. Res. Devel. 4, 443–449 (2010). https://doi.org/10.1007/s11740-010-0228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-010-0228-3

Keywords

Navigation