Skip to main content
Log in

Infrared Thermography as a Non-destructive Testing Solution for Thermal Spray Metal Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this work, an infrared (IR) thermographic procedure was evaluated as a non-destructive testing tool to detect damage in thermal spray metallic coatings. As model systems, polished HVOF- and HVAF-sprayed Fe-based layers deposited onto steel plates were employed. Damage by external-object impingement was simulated through a cyclic impact-test apparatus, which induced circumferential and radial cracks across all model systems, and interface cracks of different sizes in distinct samples. Damaged and undamaged plates were bulk-heated to above 100 °C using an IR lamp; their free-convection cooling was then recorded by an IR thermocamera. The intentionally induced defects were hardly detectable in IR thermograms, due to IR reflection and artificial “hot” spots induced by residuals of transfer material from the impacting counterbody. As a micrometer-thin layer of black paint was applied, surface emissivity got homogenized and any artifacts were effectively suppressed, so that failed coating areas clearly showed up as “cold spots.” This effect was more apparent when large interface cracks occurred. Finite-element modeling proved the physical significance of the IR-thermography approach, showing that failed coating areas are cooled by surrounding air faster than they are heated by conduction from the hot substrate, which is due to the insulating effect of cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Liebert and F.S. Stepka, Ceramic Thermal-Barrier Coatings for Cooled Turbines, J. Aircr., 1977, 14(5), p 487-493

    Article  Google Scholar 

  2. J.T. DeMasi-Marcin and D.K. Gupta, Protective Coatings in the Gas Turbine Engine, Surf. Coat. Technol., 1994, 68, p 1-9

    Article  Google Scholar 

  3. D.R. Clarke and S.R. Phillpot, Thermal Barrier Coating Materials, Mater. Today, 2005, 8(6), p 22-29

    Article  Google Scholar 

  4. R.C. Tucker, Ed., Existing and New Market Opportunities in Thermal Spray Applications, ASM HandbookVolume 5A: Thermal Spray Technology, (Materials Park, OH, USA), ASM International, 2013, p 243-337

  5. C.-J. Li and A. Ohmori, Relationships between the Microstructure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2002, 11(3), p 365-374

    Article  Google Scholar 

  6. Y.-Y. Wang, C.-J. Li, and A. Ohmori, Influence of Substrate Roughness on the Bonding Mechanisms of High Velocity Oxy-Fuel Sprayed Coatings, Thin Solid Films, 2005, 485(1), p 141-147

    Article  Google Scholar 

  7. W.J. Trompetter, A. Markwitz, M. Hyland, and P. Munroe, Evidence of Mechanical Interlocking of NiCr Particles Thermally Sprayed onto Al Substrates, J. Therm. Spray Technol., 2005, 14(4), p 524-529

    Article  Google Scholar 

  8. W. Riggs, D. Rucker, and K. Couch, Testing of Coatings, ASM HandbookVolume 5A: Thermal Spray Technology, R.C. Tucker, Ed., (Materials Park, OH, USA), ASM International, 2013, p 214-237

  9. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, Chichester, 2008

    Book  Google Scholar 

  10. S. Zhao, H. Wang, N. Wu, and C. Zhang, Nondestructive Testing of the Fatigue Properties of Air Plasma Sprayed Thermal Barrier Coatings by Pulsed Thermography, Rus. J. Nondestruct. Test., 2015, 51(7), p 445-456

    Article  Google Scholar 

  11. M. Seraffon, N.J. Simms, J.R. Nicholls, J. Sumner, and J. Nunn, Performance of Thermal Barrier Coatings in Industrial Gas Turbine Conditions, Mater. High Temp., 2011, 28(4), p 309-314

    Article  Google Scholar 

  12. S.B. Zhao, C.L. Zhang, N.M. Wu, and H.M. Wang, Quality Evaluation for Air Plasma Spray Thermal Barrier Coatings with Pulsed Thermography, Prog. Natl. Sci. Int. Chin. Mater. Res. Soc., 2011, 21(4), p 301-306

    Article  Google Scholar 

  13. V.C. Dina, G.M. Dumitru, and C. Dumitrascu, The Un Destructive Examination by Active Pulse Thermography of the Layers Deposited by Thermal Spraying, Appl. Mech. Mater., 2013, 325-326, p 371-374

    Article  Google Scholar 

  14. Q. Tang, J. Liu, J. Dai, and Z. Yu, Theoretical and Experimental Study on Thermal Barrier Coating (TBC) Uneven Thickness Detection Using Pulsed Infrared Thermography Technology, Appl. Therm. Eng., 2016, 114, p 770-775

    Article  Google Scholar 

  15. M. Schweda, T. Beck, M. Offermann, and L. Singheiser, Thermographic Analysis and Modelling of the Delamination Crack Growth in a Thermal Barrier Coating on Fecralloy Substrate, Surf. Coat. Technol., 2013, 217, p 124-128

    Article  Google Scholar 

  16. T. Ahmed, Z.J. Feng, P.K. Kuo, J. Hartikainen, and J. Jaarinen, Characterization of Plasma Sprayed Coatings Using Thermal Wave Infrared Video Imaging, J. Nondestruct. Eval., 1987, 6(4), p 169-175

    Article  Google Scholar 

  17. J.T. Demasi-Marcin, K.D. Sheffler, and S. Bose, “Mechanisms of Degradation and Failure in a Plasma Deposited Thermal Barrier Coating,” ASME 1989 International Gas Turbine and Aeroengine Congress and ExpositionVolume 5, 1989, p V005T12A004

  18. S. Chaki, P. Marical, S. Panier, G. Bourse, and A. Mouftiez, Interfacial Defects Detection in Plasma-Sprayed Ceramic Coating Components Using Two Stimulated Infrared Thermography Techniques, NDT E Int., 2011, 44(6), p 519-522

    Article  Google Scholar 

  19. H. Reed and W. Hoppe, A Model-Based, Bayesian Characterization of Subsurface Corrosion Parameters in Composite Multi-Layered Structures, AIP Conf. Proc., 2016, 1706(1), p 120010

    Article  Google Scholar 

  20. A.C. Murariu, S. Crâsteţi, and A.V. Bîrdeanu, Active Infrared Thermography Method for Non-Destructive Examination of Coating Layers, Struct. Integr. Life, 2016, 16(1), p 3-8

    Google Scholar 

  21. A.C. Murariu and S. Crasteti, Nondestructive Assessment of Anticorrosive Aluminium Coatings by Active Infrared Thermography, Adv. Mater. Res., 2013, 814, p 235-243

    Article  Google Scholar 

  22. A. Bendada, Nondestructive Inspection of Scuff-Resistant Coating Adhesion Flaws in Automobile Engine Block Cylinders, J. Adhes. Sci. Technol., 2004, 18(8), p 943-950

    Article  Google Scholar 

  23. M. Dvorak, C. Florin, and E. Amrhein, “Online Quality Control of Thermally Sprayed Coatings,” Thermal Spray 2001: New Surfaces for a New MillenniumProceedings of the International Thermal Spray Conference, C.C. Berndt, K.A. Khor, and E. Lugscheider, Eds., (Materials Park, OH, USA), ASM International, 2011, p 1255-1259

  24. J. Délémontez, M. Taglione, A. Rivière, and E. Martin, “Inspection of HVOF-Coated Pelton Wheels Using Active Thermography”, Quantitative InfraRed Thermograph Conference, 2014.

  25. F. Cernuschi, P. Bison, S. Marinetti, and E. Campagnoli, Thermal Diffusivity Measurement by Thermographic Technique for the Non-destructive Integrity Assessment of TBCs Coupons, Surf. Coat. Technol., 2010, 205(2), p 498-505

    Article  Google Scholar 

  26. J. Nunn, S. Saunders, and J. Banks, Application of Thermography in the Evaluation of Early Signs of Failure of Thermal Barrier Coating Systems, Mater. High Temp., 2005, 22(3/4), p 385-392

    Article  Google Scholar 

  27. A. Milanti, V. Matikainen, G. Bolelli, H. Koivuluoto, L. Lusvarghi, and P. Vuoristo, Microstructure and Sliding Wear Behavior of Fe-Based Coatings Manufactured with HVOF and HVAF Thermal Spray Processes, J. Therm. Spray Technol., 2016, 25(5), p 1040-1055

    Article  Google Scholar 

  28. M. Barletta, G. Bolelli, B. Bonferroni, and L. Lusvarghi, Wear and Corrosion Behavior of HVOF-Sprayed WC-CoCr Coatings on Al Alloys, J. Therm. Spray Technol., 2009, 19(1), p 358-367

    Google Scholar 

  29. P.E. Santangelo, M.A. Corticelli, and P. Tartarini, Spray Cooling by Gently-Deposited Droplets: Experiments and Modeling of Heat-Transfer Mechanisms, 15th International Heat Transfer Conference, (Kyoto, Japan), 2014, p IHTC15-8367

  30. P.E. Santangelo, A.W. Marshall, P. Valdiserri, B. Pulvirenti, and P. Tartarini, Fire Suppression by Water-Mist Sprays: Experimental and Numerical Analysis, 14th International Heat Transfer Conference, Volume 5, (Washington, DC, USA), ASME Heat Transfer Division, 2010, p 571-580

  31. P. Tartarini, M.A. Corticelli, and P.E. Santangelo, Experimental and Numerical Analysis of Droplet Cooling, 14th International Heat Transfer Conference, Volume 6, (Washington, DC, USA), ASME Heat Transfer Division, 2010, p 677-685

  32. P.E. Santangelo, M.A. Corticelli, and P. Tartarini, Experimental and Numerical Analysis of Thermal Interaction between Two Droplets in Spray Cooling of Heated Surfaces, Heat Transf. Eng., 2017. doi:10.1080/01457632.2017.1295737

  33. F.P. Incropera and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, New York, 1981

    Google Scholar 

  34. Emissivity Values for Common Materials. http://www.infrared-thermography.com/material.htm. Accessed 3 June 2017

  35. M. Klassen, M. di Marzo, and J. Sirkis, Infrared Thermography of Dropwise Evaporated Cooling, Exp. Therm. Fluid Sci., 1992, 5(1), p 136-141

    Article  Google Scholar 

  36. Ethanol. http://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Type=IR-SPEC&Index=2. Accessed 3 June 2017

  37. A. Ibrahimbegović, Quadrilateral Finite Elements for Analysis of Thick and Thin Plates, Comput. Methods Appl. Mech. Eng., 1993, 110(3-4), p 195-209

    Article  Google Scholar 

  38. Air Properties. http://www.engineeringtoolbox.com/air-properties-d_156.html. Accessed 30 April 2017

  39. J.A. Garcia, A. Mandelis, B. Farahbakhsh, C. Lebowitz, and I. Harris, Thermophysical Properties of Thermal Sprayed Coatings on Carbon Steel Substrates by Photothermal Radiometry, Int. J. Thermophys., 1999, 20(5), p 1587-1602

    Article  Google Scholar 

  40. L.M. Jiji, Heat Convection, 2nd ed., Springer, Berlin, 2009

    Book  Google Scholar 

  41. M. Corcione, Heat Transfer Correlations for Free Convection from Upward-Facing Horizontal Rectangular Surfaces, WSEAS Trans. Heat Mass Transf., 2007, 2(3), p 48-60

    Google Scholar 

  42. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington, DC, USA, 1980

  43. G. Bolelli, A. Milanti, L. Lusvarghi, L. Trombi, H. Koivuluoto, and P. Vuoristo, Wear and Impact Behaviour of High Velocity Air-Fuel Sprayed Fe-Cr-Ni-B-C Alloy Coatings, Tribol. Int., 2016, 95, p 372-390

    Article  Google Scholar 

  44. C. Li, X. Zhang, Y. Chen, J. Carr, S. Jacques, J. Behnsen, M. di Michiel, P. Xiao, and R. Cernik, Understanding the Residual Stress Distribution through the Thickness of Atmosphere Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) by High Energy Synchrotron XRD; Digital Image Correlation (DIC) and Image Based Modelling, Acta Mater., 2017, 132, p 1-12

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. P. Tartarini (Università degli Studi di Modena e Reggio Emilia, Italy) for providing IR-thermography instrumentation. Mr. G. Urso and CIGS (Centro Interdipartimentale Grandi Strumenti) at Università degli Studi di Modena e Reggio Emilia, Italy, are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Bolelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santangelo, P.E., Allesina, G., Bolelli, G. et al. Infrared Thermography as a Non-destructive Testing Solution for Thermal Spray Metal Coatings. J Therm Spray Tech 26, 1982–1993 (2017). https://doi.org/10.1007/s11666-017-0642-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0642-6

Keywords

Navigation