Skip to main content
Log in

The effect of phosphate deficiency on membrane phospholipid composition of bean (Phaseolus vulgaris L.) roots

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Plasma membranes were isolated from roots of bean (Phaseolus vulgaris L.) plants cultured on phosphate sufficient or phosphate deficient medium. The phospholipid composition of plasma membranes was analyzed and compared with that of the microsomal fraction. Phosphate deficiency had no influence on lipid/protein ratio in microsomal as well as plasma membrane fraction. In phosphate deficient roots phospholipid content was lower in the plasma membrane, but did not change in the microsomal fraction. Phosphatidylcholine and phosphatidylethanolamine were two major phospholipids in plasmalemma and microsomal membranes (80 % of the total). After two weeks of phosphate starvation a considerable decrease (about 50 %) in phosphatidylcholine and phosphatidylethanolamine in microsomal membranes was observed. The decline in two major phospholipids was accompanied by an increase in phosphatidic acid and lysophosphatidylcholine content. The effect of alterations in plasma membrane phospholipids on membrane function e.g. nitrate uptake is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LPC:

lysophosphatidylcholine

+P:

control plants

-P:

phosphate deficient plants

PA:

phosphatidic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PG:

phosphatidylglycerol

PI:

phosphatidylinositol

PS:

phosphatidylserine

References

  • Allen C.F., Good P., Davis H.F., Hisum P. & Fowler S.D. 1966. Methodology for the separation of plant lipids and application to spinach leaf and chloroplast lamellae. J. Am. Oil Chem. Soc. 43: 223–230.

    Article  CAS  Google Scholar 

  • Ames B.N. 1966. Assay of inorganic phosphate, total phosphate and phosphatases. In: Methods in Enzymology, ed. by S.P. Colowick & N. Kaplan, Acad. Press, New York: 8: 115–118.

    Google Scholar 

  • Bearden J.C. Jr. 1978. Quantitation of submicrogram quantities of protein by an improved protein-dye binding assay. Biochim Biophys. Acta 533, 525–529.

    PubMed  CAS  Google Scholar 

  • Brown D.J. and DuPont F.M. 1989. Lipid composition of plasma membranes and endomembranes prepared from roots of barley (Hordeum vulgare L.). Effect of salt. Plant Physiol. 90: 955–961.

    PubMed  CAS  Google Scholar 

  • Carvajal M., Cooke D.T. & Clarkson D.T. 1996. Plasma membrane fluidity and hydraulic conductance in weat roots: interactions between root temperature and nitrate or phosphate deprivation. Plant, Cell Env. 19: 1110–1114.

    Article  CAS  Google Scholar 

  • Carvajal M., Cooke D.T. & Clarkson D.T. 1995. The effect of nutrient deprivation on the biochemical and biophisical properties of weat root plasma membranes and their relation to root hydraulic conductivity. J. Exp. Bot. (Suppl.) 46: 51.

    Google Scholar 

  • Fife C., Newcomb W. and Lefebvre D.D. 1990. The effect of phosphate deprivation on protein synthesis and fixed carbon storage reserves in Brassica nigra suspension cells. Can. J. Bot. 68: 1840–1847.

    CAS  Google Scholar 

  • Fredrikson K., Larsson C. 1989. Activation of 1,3-β-glucan synthase by Ca2+, spermine and cellobiose. Localization of activator sites using inside-out plasma membrane vesicles. Physiol. Plant. 77: 196–201.

    Article  CAS  Google Scholar 

  • Gniazdowska A., Mikulska M. and Rychter A.M. 1998. Growth, nitrate uptake and respiration rate in bean roots under phosphate deficiency. Biol. Plant. 41: 217–226.

    Article  CAS  Google Scholar 

  • Gniazdowska A., Krawczak A., Mikulska M. and Rychter A.M. 1999. Low phosphate nutrition alters bean plants ability to assimilate and translocate nitrate. J. Plant Nutrition 22: 551–563.

    CAS  Google Scholar 

  • Gniazdowska A. and Rychter A. M. 1998. Nitrate uptake in bean roots under phosphate deficiency. Programme and abstracts of Fifth International Symposium on Structure and Function of Roots. pp.39. Stará Lesná, Slovakia.

  • Hodges T. K., Leonard R.T. 1974. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 32: 392–406.

    Article  PubMed  CAS  Google Scholar 

  • Jork H., Funk W., Fischer W., Wimmer H. 1990. Ninhydrin — Collidine Reagent. In: Thin-Layer Chromatography. Reagents and Detection Methods, ed. by H. F. Ebel, VCH, Weinheim Basel, Cambridge, New York: 1a: 354.

    Google Scholar 

  • Kasamo K., Nauchi I. 1987. The role of phospholipids in plasma membrane ATPase activity in Vigna radiata L. (mung bean) roots and hypokotyls. Plant Physiol. 83: 323–328.

    PubMed  CAS  Google Scholar 

  • Kasamo K., Sakakibara Y. 1995. The plasma membrane H+-ATPase from higher plants: functional reconstitution into liposomes and its regulation by phospholipids. Plant Science 111: 117–131.

    Article  CAS  Google Scholar 

  • Kates M. and Marshall M.O. 1975. Biosynthesis of phosphoglycerides in Plants. In: Recent Advances in the Chemistry and Biochemistry of Plant Lipids, ed. by T. Gillard and E.I. Mercel, Academic Press London, New York, San Francisco: 115–155.

    Google Scholar 

  • Kohlwein S.D., Daum G., Schneiter R. and Platauf F. 1996. Phospholipids: synthesis, sorting, subcellular traffic — the yeast approach. Trends in Cell Biol. 6: 260–266.

    Article  CAS  Google Scholar 

  • Kondracka A and Rychter A.M. 1997. The role of Pi recycling processes during photosynthesis in phosphate deficient bean plants. J. Exp. Bot. 48:1461–1468.

    Article  CAS  Google Scholar 

  • Mansour M.M.F., van Hasselt P.R. and Kuiper P.J.C. 1994. Plasma membrane lipid alterations induced by NaCl in winter wheat roots. Physiol Plant. 92: 473–478.

    Article  CAS  Google Scholar 

  • Moreau P., Bessoule J.J. and Cassagne C. 1998. Phospholipid transport in plant cells. INFORM 9: 94–99.

    Google Scholar 

  • Norberg P. and Lilienberg C. 1991. Lipids of plasma membranes prepared from oat orot cells. Effect of induced water — deficit tolerance. Plant Physiol. 96: 1136–1141.

    Article  PubMed  CAS  Google Scholar 

  • Navari-Izzo F., Quartacci M.F., Melfi D. and Izzo R. 1993. Lipid composition of plasma membranes isolated from sunflower seedlings grown under water-stress. Physiol. Plant. 87: 508–514.

    Article  CAS  Google Scholar 

  • Palmgren M. G. 1991. Regulation of plant plasma membrane H+-ATPase activity. Physiol. Plant. 83: 314–323.

    Article  CAS  Google Scholar 

  • Palmgren M.G., Sommarin M., Ulvskov P. and Jorgensen P.L. 1988. Modulation of plasma membrane H+-ATPase from oat roots by lysophosphatidylcholine, free fatty acids and phospholipase A2. Physiol. Plant. 74: 11–19.

    Article  CAS  Google Scholar 

  • Rochester C.P., Kjellbom P. and Larsson C. 1987. Lipid composition of plasma membranes from barley leaves and roots, spinach leaves and cauliflower inflorescences. Physiol. Plant. 71: 257–263.

    Article  CAS  Google Scholar 

  • Rufty T.W. Jr., Israel D.W., Volk R.J., Qui J. and Sa T. 1993. Phosphate regulation of nitrate assimilation in soybean. J. Exp. Bot. 44: 879–891.

    Article  CAS  Google Scholar 

  • Rychter A.M., Chauveau M., Bomsel J-L. and Lance C. 1992. The effect of phosphate deficiency on mitochondrial activity and adenylate levels in bean roots. Physiol. Plant. 84: 80–86.

    Article  CAS  Google Scholar 

  • Rychter A.M. and Mikulska M. 1990. The relationship between phosphate status and cyanide-resistant respiration in bean roots. Physiol. Plant. 79: 663–667.

    Article  CAS  Google Scholar 

  • Rychter A.M. and Randall D.D. 1994. The effect of phosphate deficiency on carbohydrate metabolism in bean roots. Physiol. Plant. 91:383–388.

    Article  CAS  Google Scholar 

  • Sandermann H. Jr. 1978. Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 515:209–237.

    PubMed  CAS  Google Scholar 

  • Sandstrom R.P. and Cleland R.E. 1989. Comparison of the lipid composition of oat root and coleoptile plasma membranes. Lack of short-term change in response to auxin. Plant Physiol. 90: 1207–1213.

    PubMed  CAS  Google Scholar 

  • Sikorska E. and Kacperska-Palacz A. 1980. Frost-induced phospholipid changes in cold-acclimated and non-acclimated rape leaves. Physiol. Plant. 48: 201–206.

    Article  CAS  Google Scholar 

  • Stalleart V.M. and Geuns J.M.C. 1994. Phospholipid and free sterol composition of hypocotyl plasma membranes of ageing mung bean seedlings. Phytochemistry 36: 1177–1180.

    Article  CAS  Google Scholar 

  • Surjus A. and Durand M. 1996. Lipid changes in soybean root membranes in response to salt treatment. J. Exp. Botany 47: 17–23.

    Article  CAS  Google Scholar 

  • Uemura M. and Steponkus P.L. 1994. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol. 104: 479–496.

    PubMed  CAS  Google Scholar 

  • Whitman C.E. and Travis R.L. 1985. Phospholipid composition of a plasma membrane-enriched fraction from developing soybean roots. Plant Physiol. 79: 494–498.

    PubMed  CAS  Google Scholar 

  • Widell S., Larsson C. 1981. Separation of presumptive plasma membranes from mitochondria by partition in an aqueous polymer two-phase system. Physiol. Plant. 51: 368–374.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gniazdowska, A., Szal, B. & Rychter, A.M. The effect of phosphate deficiency on membrane phospholipid composition of bean (Phaseolus vulgaris L.) roots. Acta Physiol Plant 21, 263–269 (1999). https://doi.org/10.1007/s11738-999-0041-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-999-0041-9

Key words

Navigation