Skip to main content
Log in

Effect of cadmium on glutathione reductase in potato tubers

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Short-term treatment of potato tuber (Solanum tuberosum L.) discs with CdCl2 changed glutathione reductase (GR) activity depending on cadmium ions concentrations, kind of tuber and time of incubation. The increase of GR activity at 10 and 100 µmol·dcm−3 of CdCl2 solutions was marked in less resistant tissues of cv. Bintje after 24 hrs, and was slight in more resistant tissues of cv. Bzura after 72 hrs. At 1 mmol·dcm−3 concentration of CdCl2 rapid and total inactivation in both kind of tissues was observed, which disappeared after a few days. However this elevation was faster in more resistant tissues. These inhibition effects come from the inactivation process of GR by cadmium. The values of KI for cadmium and KM for GSSG of GR from potato tuber tissues indicated that enzyme from more resistant tissues possessed lower affinity to toxic metal and higher affinity to substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alscher RG. 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant. 77, 457–464.

    Article  CAS  Google Scholar 

  • Bartosz, G. 1995. Druga twarz tlenu. PWN, Warszawa.

    Google Scholar 

  • Brunner, M., Kocsy, G., Rüegsegger, A., Schmutz, D., Brunold, C. 1995. Effect of chilling on assimilatory sulfate reduction and glutathione synthesis in maize. J. Plant Physiol. 146, 743–747.

    CAS  Google Scholar 

  • Castillo F.J., Greppin H. 1988. Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ. Exp. Botany, 231–238.

  • De Vos CH, De Waal MAM, Vooijs R, Schat H, Ernst WHO. 1991. Increased resistance to copper-induced damage of root cell plasmalemma in copper tolerant Silene cucubalus. Physiol. Plant. 82, 523–528.

    Article  Google Scholar 

  • Dhidsa R.S. 1991. Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein synthesis in Tortula ruralis. Plant Physiol. 95, 648–651.

    Google Scholar 

  • Esterbauer H., Grill D. 1978. Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiol. 61, 119–121.

    PubMed  CAS  Google Scholar 

  • Foyer C.H., Lelandais M., Kuert K-J. 1994. Photooxidative stress in plants. Plant Physiol. 92, 696–717.

    Article  CAS  Google Scholar 

  • Foyer C.H., Souriau N., Perret S., Lelandais M., Kuert K-J., Pruvost C., Jouanin L. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109, 1047–1057.

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM 1997. Hydrogen peroxide- and glutathione- associated mechanisms of acclimatory stress tolerance and signaling. Physiol. Plant. 100, 241–254.

    Article  CAS  Google Scholar 

  • Gamble P.E., Burke J.J. 1984. Effect of water stress on the chloroplast antioxidative system. I. Alterations of glutathione reductase activity. Plant Physiol. 76, 615–621.

    PubMed  CAS  Google Scholar 

  • Goa J. 1953. A micro biuret method for protein determination. Scand. J. Clin. Lab. 5, 218–222.

    CAS  Google Scholar 

  • Guy C.L., Carter J.V., Telenosky G., Guy C.T. 1984. Changes of glutathione content during cold acclimation in Cornus suecica and Citrus sinensis. Cryobiology 21, 443–453.

    Article  CAS  Google Scholar 

  • Halliwell B., Foyer C.H. 1978. Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139, 9–17.

    Article  CAS  Google Scholar 

  • Hodges D.M., Andrews C.J., Johnson D.A., Hamilton R.I. 1997. Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J. Exper. Bot. 1105–1113.

  • Jones, G.J., Nichols, P.B., Johns, R.S., and Smith, J.B. 1987. The effect of mercury and cadmium on the fatty acid and sterol composition Of the marine diatom Asterionella glacialis. Phytochemistry 26, 1343–1348.

    Article  CAS  Google Scholar 

  • Madamanchi N.R., Alcher R.G. 1991. Metabolic bases for differences in sensitivity of two pea cultivars to sulfur dioxide. Plant Physiol. 97, 88–93.

    PubMed  CAS  Google Scholar 

  • May, MJ, and CJ Leaver 1993. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 103, 621–627.

    PubMed  CAS  Google Scholar 

  • Mehlhorn H., Cottam D.A., Lucas P.W., Wellburn A.R. 1987. Induction of ascorbate peroxidase and glutathione reductase activities by interactions of mixtures of air pollutants. Free Rad. Res. Comm. 3, 1–5.

    Google Scholar 

  • Prasad, TK, MD Anderson, BA Martin, and CR Stewart 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 6, 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Rüegsegger, A., D. Schmutz, and C. Brunold 1990. Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol. 93, 1579–1584.

    PubMed  Google Scholar 

  • Rüegsegger, A. and C. Brunold 1992. Effect of cadmium on Ă-glutamylcysteine synthesis in maize seedlings. Plant Physiol. 99, 428–433.

    PubMed  Google Scholar 

  • Scandalios J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101, 7–12.

    PubMed  CAS  Google Scholar 

  • Smirnoff N., Colombe S.V. 1988. Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J. Exp. Bot. 39, 1097–1108.

    Article  CAS  Google Scholar 

  • Stroiński A. 1999. Some physiological and biochemical aspects of plant resistance to cadmium effect. I. Antioxidative system. Acta Physiol. Plant. 21: 75–85.

    Article  Google Scholar 

  • Stroiński, A. and A. Bandurska 1996. Cadmium influence on antioxidants levels in potato tuber. In: Proceedings of the Conference: Ekofizjologiczne aspekty reakcji roślin na działanie abiotycznych czynników stresowych. Eds. S. Grzesiak and Z. Miszalski, pp 191–198 (English abstract), Kraków.

  • Stroiński, A., J. Floryszak-Wieczorek 1990. Effects of cadmium on the host-pathogen system. III. Influence of cadmium and Phytophthora infestans on membrane permeability of potato leaves. Biochem. Physiol. Pflanzen 186, 417–421.

    Google Scholar 

  • Stroiński, A., J. Floryszak-Wieczorek 1993. Effects of cadmium on the host-pathogen system. IV. Influence of cadmium and phytophthora infestans on membrane permeability of potato tuber. J. Plant Physiol. 142, 575–578.

    Google Scholar 

  • Stroiński, A., Kozłowska, M. 1997. Cadmium-induced Oxidative Stress in Potato Tuber. Acta Soc. Bot. Pol. 66, 189–195.

    Google Scholar 

  • Stroiński A, and Zielezińska M. 1997. Cadmium effect on hydrogen peroxide, glutathione and phytochelatins levels in potato tuber. Acta Physiol. Plant. 19, 127–136.

    Google Scholar 

  • Stroiński, A., J. Floryszak-Wieczorek, and A. Woźny 1990a. Effects of cadmium on the host- pathogen system. I. Alterations of potato leaves and Phytophthora infestans relations. Biochem. Physiol. Pflanzen 186, 43–54.

    Google Scholar 

  • Stroiński, A., A. Woźny, and J. Floryszak-Wieczorek 1990b. Effects of cadmium on the host-pathogen system. II. Alterations of potato tuber and Phytophthora infestans relations. Biochem. Physiol. Pflanzen 186, 229–238.

    Google Scholar 

  • Tanaka, K., Suda, Y., Kondo, N., Sugahara, K. 1985. O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol. 26, 1425–1431.

    CAS  Google Scholar 

  • Tukendorf, A. 1993a. Fitochelatyny — roślinne peptydy wiążące metale ciężkie. Postępy Biochemii 39, 60–67.

    PubMed  CAS  Google Scholar 

  • Tukendorf, A. 1993b. The role of glutathione in detoxification of cadmium and excess copper in spinach plants. Acta Physiol. Plant. 15, 175–183.

    CAS  Google Scholar 

  • Tukendorf, A. and W.E. Rauser 1990. Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Science 70, 155–166.

    Article  CAS  Google Scholar 

  • Vögeli-Lange R, Wagner GJ. 1990. Subcellular localization of cadmium-binding peptides in tobacco leaves. Plant Physiol. 92, 1086–1093.

    Article  PubMed  Google Scholar 

  • Webb J.L. 1963. Enzyme and metabolic inhibitor. Vol. I. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroiński, A., Kubiś, J. & Zielezińska, M. Effect of cadmium on glutathione reductase in potato tubers. Acta Physiol Plant 21, 201–207 (1999). https://doi.org/10.1007/s11738-999-0033-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-999-0033-9

Key words

Navigation