Skip to main content
Log in

Gene expression and oxalate oxidase activity of two germin isoforms induced by stress

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Wheat germin is a homopentameric 125 kD glycoprotein mainly localized in the cell wall of monocots, and is a specific marker of the onset of growth in germinating seeds. The major objective of this study was to examine the expression and oxalate oxidase activity of two wheat germin isoforms: gf-2.8 and gf-3.8 in transgenic tobacco plants. The transgenic tobacco plants were created with different constructs: 1) one entire excision of gf-2.8 germin promoter and two partially deleted promoter sequences were used to generate 3 independent GUS constructs; 2) the whole gf-2.8 gene construct and the fusion with CaMV 35S promoter; 3) one entire excision of gf-3.8 germin gene and one partially deleted gf-3.8 promoter sequences were used to generate 2 independent GUS constructs; 4) the whole gf-3.8 gene and the fusion with CaMV 35S promoter. Hormonal treatment (auxin and gibberellin), salt treatment, heavy metals (Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg, As) and Al induced high GUS activity in tobacco transformed with entire and one partially deleted of the gf-2.8 gene. The immunoblotting confirmed induction of gf-2.8 gene and its product expressed oxalate oxidase activity in tobacco transformed with the entire gf-2.8 construct. Neither nicotinic acid, salicylic acid, heat shock, cold nor UV-C have enhanced significant GUS activity and germin gf-2.8 synhesis and activity.

The germin gf-3.8 constructs with GUS gene and with the entire gf-3.8 sequences gave non-positive response with factors mentioned above. It has been demonstrated that gf-3.8 germin isoform is present as a monomer (Mr 25 kD). The non-active gf-3.8 protein is synthetised in transgenic tobacco plants only under control of the CaMV 35S promoter.

Consequently, among two germin isoforms, only the gf-2.8 protein seems to be regulated by hormonal, salt and heavy metal factors. The gf-2.8 oxalate oxidase activity could be then involved in general stress-induced signalling in plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ac:

acetate

BCIP/NBT:

5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium

bp:

base pair

DTT:

dithiothreitol

EH:

“EcoRI-HindII” construct

GUS:

β-D-glucuronidase

kDa:

kilodalton(s)

Mr :

relative mass

MU:

methylumbeliferone

SDS:

sodium dodecyl sulfate

SH:

“SphI-HindIII” construct

SSC:

salt sodium citrate

XH:

“XbaI-HindIII” construct

References

  • Ballas N., Wong L-M., Ke M., Theologis A. 1995. Two auxin-responsive domains interact positively to induce expression of the early indoleacetic acid-inducible gene PS-IAA4/5. Proc. Natl. Acad. Sci. USA, 92: 3483–3487.

    Article  PubMed  CAS  Google Scholar 

  • Berna A. and Bernier F. 1997. Regulated expression of wheat germin gene in tobacco: oxalate oxidase activity and apoplastic localisation of the heterologous protein. Plant Mol. Biol., 33: 417–429.

    Article  PubMed  CAS  Google Scholar 

  • Bollag D. M., Rozycki M. D., Edelstein S. J. 1996. Protein Methods: 95. Second Edition. A John Wiley and Sons, INC., Publication New York.

    Google Scholar 

  • Bradford M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem., 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Brodl M. R. and Ho T-D. 1991. Heat Shock Causes Selective Destabilization of Secretory Protein mRNAs in Barley Aleurone Cells. Plant Physiol., 96: 1048–1052.

    PubMed  CAS  Google Scholar 

  • Carpita N. C. and Gibeaut D. M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant J., 3: 1–30.

    Article  CAS  Google Scholar 

  • Cassab G. I. and Varner J. E. 1988. Cell Wall Proteins. Ann. Rev. Plant Mol. Biol., 39: 321–353.

    Article  CAS  Google Scholar 

  • Chamberland S., Daigle N, Bernier F. 1992. The legumin boxes and the 3′ part of a soybean b-conglycinin promoter are involved in seed gene expression in transgenic tobbaco plants. Plant Mol. Biol., 19: 937–949.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P. and Sacchi N. 1987. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162: 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Clapham D. E. 1995. Calcium Signaling, Review. Cell 80: 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Daigle N., Lane B. G., Bernier F. 1993. Expression of the wheat germin promoter in transgenic tobacco plants. In: Côme, D., Corbineau, F. (eds). Fourth International Workshop on Seeds: Basis and Applied Aspects of Seeds Physiology, vol. 2: 305–309. ASFIS, Paris.

    Google Scholar 

  • Delhaize E. and Ryan P. R. 1995. Aluminum Toxicity and Tolerance in Plants. Plant Physiol., 107. 315–321.

    PubMed  CAS  Google Scholar 

  • Domon J. M., Dumas B., Lainé E., Meyer Y., David A., David H. 1995. Three glycosylated polypeptides secreted by several embryogenic cell cultures of pine show highly specific serological affinity to antibodies directed against the wheat germin apoprotein monomer. Plant Physiol., 108: 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Dratewka-Kos E., Rahman S., Grzelczak Z. F., Kennedy T. D., Murray R. K., Lane B. G. 1989. Polypeptide Structure of Germin as Deduced from cDNA Sequencing. J. Biol. Chem., 264: 4896–4900.

    PubMed  CAS  Google Scholar 

  • Dumas B., Sailland A., Cheviet J-P., Freyssinet G., Pallett K. 1993. Identification of barley oxalate oxidase as a germin-like protein. C. R. Acad. Sci. Paris, Sciences de la vie/Life Sciences, 316: 793–798.

    CAS  Google Scholar 

  • Dumas B., Freyssinet G., Pallett K. 1995. Tissuespecific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings. Plant Physiol., 107: 1091–1096.

    PubMed  CAS  Google Scholar 

  • Esaka M., Fujisawa K., Goto M., Kisu Y. 1992. Regulation of Ascorbate Oxidase Expression in Pumpkin by Auxin and Copper. Plant Physiol., 100: 231–237.

    PubMed  CAS  Google Scholar 

  • Feinberg A. P. and Vogelstein B. 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem., 132: 6–13.

    Article  PubMed  CAS  Google Scholar 

  • Gehring C. A., Irving H. R., Parish R. W. 1990. Effect of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc. Natl. Acad. Sci. USA, 87: 9645–9649.

    Article  PubMed  CAS  Google Scholar 

  • Goldsbrough A. P., Albrecht H., Stradford R. 1993. Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly concerved among stress-inducible genes. The Plant J., 4: 563–571.

    Article  Google Scholar 

  • Goodall G. J., Wiebauer K., Filipowicz W. 1990. Analysis of Pre-mRNA Processing in Transfected Plant Protoplasts. Methods in Enzymology 88: 148–161.

    Google Scholar 

  • Green R. and Fluhr R. 1995. UV-B-Induced PR-1 Accumulation Is Mediated by Active Oxygen Species. The Plant Cell 7: 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Grzelczak Z. F. and Lane B. G. 1983. The growthrelated 28-kilodalton protein in germinating wheat. Use of peptide mapping to identify cryptic forms in cell-free extracts and protein-synthesis systems. Can. J. Biochem. Cell Biol., 61: 1233–1243.

    CAS  Google Scholar 

  • Grzelczak Z. F. and Lane B. G. 1984. Signal resistance of soluble protein to enzymic proteolysis. An unorthodox approach to the isolation and purification of germin, a rare growth-related protein. Can. J. Biochem. Cell Biol., 62: 1351–1353.

    CAS  Google Scholar 

  • Grzelczak Z. F., Sadequr R., Kennedy T. D., Lane B. G. 1985. Germin. Compartimentation of protein, its translatable mRNA, and its biosynthesis among roots, stems, and leaves of wheat seedlings. Can. J. Biochem. Cell Biol., 63: 1003–1013.

    CAS  Google Scholar 

  • Gulick P. and Dvorak J. 1992. Coordinate Gene Response to Salt Stress in Lophopyrum elongatum. Plant Physiol., 100: 1384–1388.

    PubMed  CAS  Google Scholar 

  • Heintzen. C., Fischer R., Melzer S., Kappeler S., Apel K., Staiger D. 1994. Circadian Oscillations of a Transcript Encoding a Germin-Like Protein That Is Associated with Cell Wall in Young Leaves of the Long-Day Plant Sinapis alba L. Plant Physiol., 106: 905–915.

    Article  PubMed  CAS  Google Scholar 

  • Höfte H., Desprez T., Amselem J., Chapello H., Caboche M. 1993. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNA from Arabidopsis thaliana. The Plant Journal, 4: 1051–1061.

    Article  PubMed  Google Scholar 

  • Hurkman W. J., Lane B. G., Tanaka C. K. 1994. Nucleotide Sequence of a Transcript Encoding a Germin-Like Protein That Is Present in Salt-Stressed Barley (Hordeum vulgare L.) Roots. Plant Physiol., 104: 803–804.

    Article  PubMed  CAS  Google Scholar 

  • Hurkman W. J. and Tanaka C. K. 1996a. Effect of Salt Stress on Germin Gene Expression in Barley Roots. Plant Physiol., 110: 971–977.

    PubMed  CAS  Google Scholar 

  • Hurkman W. J. and Tanaka C. K. 1996b. Germin Gene Expression Is Induced in Wheat Leaves by Powdery Mildew Infection. Plant Physiol., 111: 735–739.

    PubMed  CAS  Google Scholar 

  • Jackson P. J., Unkefer P. J., Delhaize E., Robinson N. J. 1990. Mechanism of Trace Metal Tolerance in Plants in Environmental Injury to Plants. Academic Press, Inc: 231–255.

  • Jaikaran A. S. I., Kennedy T. D., Dratewka-Kos E., Lane B. G. 1990. Covalently Bonded and Adventitious Glycans in Germin. The Journal of Biol. Chem., 265: 12503–12512.

    CAS  Google Scholar 

  • Jefferson R. A. 1987. Assaying Chimeric Genes in Plants: The GUS Gene Fusion System. Plant Mol. Biol. Reporter, 5: 387–405.

    Article  CAS  Google Scholar 

  • Kabata-Pendias A. and Pendias H. 1993. In: The Biogeochemistry of Traces Elements (In Polish) Wydawnictwo Naukowe PWN. Warszawa: 21–25.

  • Kauss H. and Jeblick W. 1996. Influence of Salicylic Acid on the Induction of Competence for H2O2 Elicitation. Comparisom of Ergosterol with Others Elicitors. Plant Physiol., 111: 755–763.

    PubMed  CAS  Google Scholar 

  • Knight H., Trewavas A. J., Knight M. R. 1996. Cold Calcium Signaling in Arabidopsis Involes Two Cellular Pools and a Change in Calcium Signature after Acclimation. The Plant Cell, 8: 489–503.

    Article  PubMed  CAS  Google Scholar 

  • Krishna P., Sacco M., Cherutti J. F., Hill S. 1995. Cold-Induced Accumulation of hsp90 Transcripts in Brassica napus. Plant Physiol., 107: 915–923.

    PubMed  CAS  Google Scholar 

  • Laemmli U. K. 1970. Cleavage of Structural Protein During the Assembly of the Head of Bacteriophage T4. Nature, 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lane B. G., Grzelczak Z. F., Kennedy T. D., Kajioka R., Orr J., D’Agostino S., Jaikaran A. 1986a. Germin: compartimentation of two forms of the protein by washing growing wheat embryos. Biochem. Cell Biol., 64: 1025–1037.

    CAS  Google Scholar 

  • Lane B., Grzelczak Z., Kennedy T., Hew C., Joshi S. 1986b. Preparation and analysis of mass amounts of germin: demonstration that the protein which signals the onset of growth in germinting wheat is a glycoprotein. Biochem. Cell Biol., 65: 354–362.

    Google Scholar 

  • Lane B., Kajioka R., Kennedy T. 1987. The wheatgerm Ec protein is a zinc-containing metallothionein. Biochem. Cell Biol., 65: 1001–1005.

    Article  CAS  Google Scholar 

  • Lane B. G. 1991. Cellular dessication and hydration: developmentally regulated proteins, and the maturation and germination of seed embryos. The FASEB J., 5: 2893–2901.

    CAS  Google Scholar 

  • Lane B. G., Bernier F., Dratewka-Kos E., Shafai R., Kennedy T. D., Pyne C., Munro J. R., Vaughan T., Walters D. Altmomare F. 1991. Homologies between Members of the Germin Gene Family in Hexaploid Wheat and Similarities between These Wheat Germins and Certain Physarum Spherulins. The Journal of Biol. Chem., 266: 10461–10469.

    CAS  Google Scholar 

  • Lane B. G., Cuming A. C., Frégeau J., Carpita N. C., Hurkman W. J., Bernier F., Dratewka-Kos E., Kennedy T. D. 1992. Germin isoforms are discrete temporal markers of wheat development. Pseudogermin is uniquely thermostable water-soluble oligomeric protein in ungerminated embryos and like germin in germinated embryos, it is incorporated into cell wall. Eur. J. Biochem., 209: 961–969.

    Article  PubMed  CAS  Google Scholar 

  • Lane B. G., Dunwell J. M., Ray J. A., Schmitt M. R., Cuming A. C. 1993. Germin, a Protein Marker of Early Plant Development, Is an Oxalate Oxidase. The Journal of Biol. Chem., 268: 12239–12242.

    CAS  Google Scholar 

  • Lane B. G. 1994. Oxalate, germin and the extracellular matrix of higher plants. The FASEB J., 8: 294–301.

    CAS  Google Scholar 

  • LaRosa P. C., Chen Z., Nelson D. E., Singh N. K., Hagesawa P. M., Bressan R. A. 1992. Osmotin Gene Expression Is Posttranscriptionally Regulated. Plant Physiol., 100: 409–415.

    PubMed  CAS  Google Scholar 

  • Legrimini L. M., Burkhart W., Moyer M, Rothstein S. 1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc. Natl. Aćad. Sci. USA, 84: 7542–7546.

    Article  Google Scholar 

  • Liu X and Lam E. 1994. Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. J. Biol. Chem., 269: 668–675.

    PubMed  CAS  Google Scholar 

  • Lobréaux S., Thoiron S., Briat J-F. 1995. Induction of ferritin synthesis in maize leaves by an iron-mediated oxidative stress. The Plant J., 8: 443–449.

    Article  Google Scholar 

  • McCubbin W. D., Kay C. M., Lane B. G. 1985. Hydrodynamic and optical properties of the wheat germ Em protein. Can. J. Biochem. Cell Biol., 63: 803–811.

    CAS  Google Scholar 

  • Mehdy M. C., Sharma Y. K., Sathasivan K., Bays N. W. 1996. The role of activated oxygen species in plant disease resistance. Physiologia Plantarum, 98: 365–374.

    Article  CAS  Google Scholar 

  • Michalowski C. B. and Bohnert H. J. 1992. Nucleotide Sequence of a Root-Specific Transcript Encoding a Germin-Like Protein from the Halophyte Mesembryanthemum crystallinum. Plant Physiol., 100: 537–538.

    Article  PubMed  CAS  Google Scholar 

  • Rahman S., Grzelczak Z., Kennedy T., Lane B. G. 1988. Molecular cloning of cDNA that selects germin mRNA from bulk wheat mRNA. Biochem Cell Biol., 66: 100–106.

    PubMed  CAS  Google Scholar 

  • Rogers J. C., Lenahan M. B., Rogers S. W. 1994. The cis-Acting Gibberellin Complex in High-plant α-Amylase Gene Promoters. Plant Physiol., 105: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Rogers S. G., Horsh R. B., Fraley R. T. 1988. Gene Transfer in Plants Using Ti Plasmid Vectors. In: Methods For Plant Molecular Biology 26. Edited by Arthur Weissbach and Herbert Weissbach. Harcourt Brace Janovich Publishers: 423–436.

  • Sambrook J., Fritsh E. F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Scalbert A., Monties B., Lallemand J-Y., Guittet E., Rolando C. 1985. Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochem., 24: 1359–1362.

    Article  CAS  Google Scholar 

  • Sugiura M., Yamamura H., Hirano K., Sasaki M., Morikawa M., Tsuboi M. 1979. Purification and Properties of Oxalate Oxidase from Barley Seedlings. Chem. Pharm. Bull., 27: 2003–2007.

    CAS  Google Scholar 

  • Swanson S. J. and Jones R. L. 1996. Gibberelic Acid Induces Vacuolar Acidification in Barley Aleurone. The Plant Cell, 8: 2211–2221.

    Article  PubMed  CAS  Google Scholar 

  • Ulmassov T., Liu Z. B., Hagen G., Guilfoyle T. J. 1995. Composite structure of auxin response elements. Plant Cell, 7: 1611–1623.

    Article  Google Scholar 

  • Wakabayashi K., Hoson T., Kamisaka S. 1997. Osmotic Stress Suppresses Cell Wall Stiffening and the Increase in Cell Wall-Bound Ferulic and Diferulic Acids in Wheat Coleoptiles. Plant Physiol., 113: 967–973.

    PubMed  CAS  Google Scholar 

  • Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Métraux J-P., Ryals J. A. 1991. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquiered Resistance. The Plant Cell, 3: 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z., Collinge D. B., Thordal-Christensen H. 1995. Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery milew fungus. The Plant J., 8: 139–145.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowakowska, J. Gene expression and oxalate oxidase activity of two germin isoforms induced by stress. Acta Physiol Plant 20, 19–33 (1998). https://doi.org/10.1007/s11738-998-0039-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-998-0039-8

Key words

Navigation