Skip to main content
Log in

Effect of culture medium and light conditions on the morphological characteristics and carbohydrate contents of Medicago strasseri calli

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Using 6 culture media (12, 12D, 12G, 11, A and B) made up of MS medium (Murashige-Skoog, 1962) supplemented or not with glycerine, with different cytokinins, and/or 2,4-D, the morphological characteristics and contents in total carbohydrates, reducing sugars, sucrose and starch were studied in calli induced from explants (cotyledon, petiole, hypocotyl and leaf) obtained from Medicago strasseri seedlings. Callus formation was induced under photoperiod (16h light/8h darkness) conditions or in the absence of light.

Considerable variability in the calli was observed, depending on the explants and media used. Under photoperiod conditions, medium A with KIN (1 mg/l) and 2,4-D (3 mg/l) induced many calli with the highest contents in total carbohydrates (886.1–889.3 mg/g DW), sucrose (132.1–188.2 mg/g DW) and starch (125.2–247.6 mg/g DW) and the lowest contents in reducing sugars (118.4–173.3 mg/g DW). In media 11, A and B, under conditions of darkness, calli degenerated at the start of culture. Calli developed in darkness generally had dry weights and total carbohydrate and starch contents lower than those cultured under photoperiod conditions. However, sucrose contents were greater in calli formed in darkness.

At these cultures times, differentiation, in the form of organogenesis, was only seen using medium B with cotyledons, petioles and leaves as explants. It was also observed when petioles were cultured in medium A but with a less pronounced organogenic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C.H.:

carbohydrates

D:

darkness

2,4-D:

2,4-dichlorophenoxyacetic acid

DW:

dry weight

FW:

fresh weight

KIN:

kinetin

Ph:

photoperiodic conditions

TDZ:

Thidiazuron

References

  • Branca C., Torelli A., Fermi P., Altamura M.M., Bassi M. 1994. Early phases “in vitro” culture tomato cotyledony: Starch accumulation and protin partten in relation to the horizontal treatment. Protoplasma 182, 59–64.

    Article  Google Scholar 

  • Dubois M., Gilles K.J., Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 356–361.

    Article  Google Scholar 

  • Gordon A.J., Ryle G.J.A., Mitchell D.F., Lowry K.H., Powell C.E. 1986. The effect of defoliation on carbohydrate, protein and leg-haemoglobin content of white clover nodules. Annals of Botany 58, 141–154.

    CAS  Google Scholar 

  • Greuter W., Matthäs U., Risse H. 1982. Notes on Cardaegean plants. 3. Medicago strasseri, a new leguminous shrub from Kriti. Willdenowia 12,201–206.

    Google Scholar 

  • Huber S.C., Akazawa T. 1986. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells. Plant Physiol. 81, 1008–1013.

    Article  PubMed  CAS  Google Scholar 

  • Jenner C.F. 1982. Storage of Starch. In: Loevus FA and Tanner W (eds) Plant carbohydrates I, Intracellular carbohydrate. pp. 700–737. Springer-Verlag. Berlin.

    Google Scholar 

  • Keller G.L., Nikolau B.J., Ulrich T.H. Wurtele E.S. 1988. Comparison of starch and ADP-glucose pyrophosphorylase levels in nonembryogenic cells and developing embryos from induced carrot cultures. Plant Physiol. 86, 451–456.

    PubMed  CAS  Google Scholar 

  • Komor E., Thom M., Maretzki A. 1981. The mechanism of sugar uptake by sugarcane suspension cells. Planta 153, 181–192.

    Article  CAS  Google Scholar 

  • Lai F-M., McKersie B.D. 1994. Regulation of starch and protein accumulation in alfalfa (Medicago sativa L.) somatic embryos. Plant Sci. 100, 211–219.

    Article  CAS  Google Scholar 

  • Mangat B.S., Pelekis M.K., Cassells A.C. 1990. Changes in the starch content during organogenesis in in vitro cultured Begonia rex stem explants. Physiol. Plant. 79, 267–274.

    Article  CAS  Google Scholar 

  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tabacco tissue cultures. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  • Naidu K.R., Kishor P.B.K. 1995. Activities of hydrolytic enzymes in callus cultures of tobacco during organogénesis. J. Bioscien. 20, 629–636.

    CAS  Google Scholar 

  • Nelson N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153, 375–380.

    CAS  Google Scholar 

  • Nguyen S.T., Paquin R. 1971. Méthodes d’extraction et de purification des acides aminés libres et des protéines de tissus végétaux. J. Chromatogr. 61, 349–351.

    Article  CAS  Google Scholar 

  • Paek K.Y., Canderlerd S., Thorpe T.A. 1988. Physiological effects of Na2SO4 and NaCl on callus cultures of Brassica campestris (Chinesse cabbage). Physiol. Plant. 72, 160–166

    Article  CAS  Google Scholar 

  • Preiss J. 1982. In: Loevus FA and Tanner W (eds) Plant carbohydrates I, Intracellular carbohydrate. pp. 397–417. Springer-Verlag. Berlin.

    Google Scholar 

  • Rawal S.K., Dwivedi U.N., Khan B.M., Mascarenhas A.F. 1984. Biochemical aspects of shoot differentiation in sugarcane callus: Carbohydrate metabolizing enzymes. J. Plant Physiol. 119, 191–199.

    Google Scholar 

  • Rout G.R., Samantaray S, Das P. 1995. Somatic embryogenesis and plant regeneration from callus culture of Acacia catechu — a multipurpose leguminous tree. Plant Cell, Tiss. Org. Cult. 42, 283–285.

    Article  CAS  Google Scholar 

  • Somogyi M. 1952. Notes on sugar determination. J. Biol. Chem. 195, 19–23.

    CAS  Google Scholar 

  • Stamp J.A. 1987. Somatic embryogenesis in cassava. The anatomy and morphology of the regeneration process. Ann. Bot. 57, 451–459.

    Google Scholar 

  • Swarnkar P.L., Bohra S.P., Chandra N. 1986. Biochemical studies on initiation of callus in Solanum surattense. J. Plant Physiol. 126, 293–296.

    CAS  Google Scholar 

  • Thorpe T.A., Joy R.W., Leung D.W.M. 1986. Starch turnover in shoot-forming tobacco callus. Physiol. Plant. 66, 58–62.

    Article  CAS  Google Scholar 

  • Venkataramana S., Naidu K.M., Singh S. 1991. Invertases and growth factors dependent sucrose accumulation in sugarcane. Plant Sci. 74, 65–72.

    Article  CAS  Google Scholar 

  • Vu J.C.V., Niedz R.P., Yelonsky G. 1993. Glycerol stimulation of chlorophyll synthesis, embryogenesis, and carboxylation and sucrose metabolism enzymes in nucellar callus of “Hamlin” sweet orange. Plant Cell, Tiss. Org. Cult. 33, 75–80.

    Article  CAS  Google Scholar 

  • Vu J.C.V., Niedz R.P., Yelonsky G. 1995. Activities of sucrose metabolism enzymes in glycerol grown suspension cultures of sweet orange (Citrus sinensis L. Osbeck). Env. Exp. Bot. 35, 455–462.

    Article  CAS  Google Scholar 

  • Zheng, Q., Dessai, A.P., Prakash, C.S. 1996. Rapid and repetitive plant regeneration in sweetpotato via somatic embryogenesis. Pl. Cell. Rep. 15, 381–385.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, M., Villalobos, N., De La Cruz, P.J. et al. Effect of culture medium and light conditions on the morphological characteristics and carbohydrate contents of Medicago strasseri calli. Acta Physiol Plant 20, 383–392 (1998). https://doi.org/10.1007/s11738-998-0024-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-998-0024-2

Key words

Navigation