Skip to main content
Log in

Growth response of vetiver grass (Chrysopogon zizanioides (L.) Roberty) to chemical amendments in assisted phytoremediation of contaminated mined soil

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The application of chemical amendment to improve metal availability is a key strategy in phytoremediation and an important determinant for successful removal of heavy metals from soil, although empirical data on their effects on plants used in phytoremediation are scanty. In this study, field-based assisted phytoremediation with ethylene-diamine-tetra-acetic acid (EDTA), nitrogen-potassium-phosphorus fertilizer (NPK) and combination of EDTA and NPK modelled after the completely randomized block design was used to determine the effects of chemical amendments on some morphological and physiological growth parameters of vetiver grass (Chrysopogon zizanioides (L.) Roberty) as well as the relative effects of chemical amendment and free heavy metal ions contamination. Results showed that the soil amendments (EDTA, NPK, EDTA + NPK) enhanced plant height and diameter, and reduced the toxicity of free metal ions. On the other hand, heavy metals reduced plant chlorophyll-a and -b, and plant root, and correlated with lipid peroxidation. Notably, EDTA contributed the least to enhancing plant height, diameter, and root length although it interacted positively with NPK to enhance the above-mentioned parameters. In general, the results of this study confirm the effectiveness of chemical amendments (EDTA and NPK in this case) in reducing the toxicity of free heavy metal ions in plant during phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akoto R, Anning AK (2021) Heavy metal enrichment and potential ecological risks from different solid mine wastes at a mine site in Ghana. Environ Adv. https://doi.org/10.1016/j.envadv.2020.100028

    Article  Google Scholar 

  • Akoto R, Anning AK, Belford EJD (2021) Effects of ethylenediaminetetraacetic acid-assisted phytoremediation on soil physicochemical and biological properties. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03770-9

    Article  Google Scholar 

  • Anning AK, Mccarthy BC (2013) Competition, size and age affect tree growth response to fuel reduction treatments in mixed-oak forests of Ohio. Forest Ecol Manag 307:74–83. https://doi.org/10.1016/j.foreco.2013.07.008

    Article  Google Scholar 

  • Anning AK, Akoto R (2018) Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha Latifolia and Chrysopogon Zizanioides. Ecotoxicol Environ Saf 148(2018):97–104

    Article  CAS  PubMed  Google Scholar 

  • Arochas A, Volker K, Foncecar R (2010) ‘Application of vetiver grass for mine sites rehabilitation in Chile’. Latin American vetiver conference, Santiago, Chile

  • Arsenov D et al (2019) Greenhouse assessment of citric acid-assisted phytoremediation of cadmium by Willows (Salix Spp.) – effect on photosynthetic performances and metal tolerance. Balt for 25(2):203–212

    Article  Google Scholar 

  • Bian X, Cui J, Tang B, Yang Li (2018) Chelant-induced phytoextraction of heavy metals from contaminated soils : a review. Pol J Environ Stud 27(6):2417–2424

    Article  CAS  Google Scholar 

  • Bidwell RGS (1979) ‘Plant Physiology’, 2nd. Collier MacMillan Publishers, London

    Google Scholar 

  • Blight G (2011) ‘Mine waste: a brief overview of origins, quantities, and methods of storage geoffrey’. https://doi.org/10.1016/B978-0-12-381475-3.10005-1 77 77–88

  • Chaney RL, Broadhurst CL, Centofanti T. (2010) ‘Phytoremediation of soil trace elements’. In trace elements in soils (Hooda, P. S., Ed.), John Wiley and Sons, Ltd., Chichester, UK

  • Chettri MK et al (1998) The effect of Cu, Zn and Pb on the chlorophyll content of the lichens cladonia convoluta and cladonia rangiformis. Environ Exp Bot 39(1):1–10

    Article  CAS  Google Scholar 

  • Collins RN, Merrington G, McLaughlin MJ, Knudsen C (2002) Uptake of intact zinc-ethylenediaminetetraacetic acid from soil is dependent on plant species and complex concentration. Environ Toxicol Chem Int J 21(9):1940–1945

    CAS  Google Scholar 

  • Dalcorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci 20:3412. https://doi.org/10.3390/ijms20143412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalvi AA, Bhalerao SS (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2:362–368

    Google Scholar 

  • Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremed 11(8):664–691

    Article  CAS  Google Scholar 

  • Du RJ, He EK, Tang YT, Hu PJ, Ying RR, Morel JL, Qiu RL (2011) How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata. Int J Phytorem 13:1024–1036

    Article  CAS  Google Scholar 

  • Ebrahimi M (2013) Effect of EDTA application on heavy metals uptake and germination of Echinochloa Crus Galii ( L.) beave in contaminated soil. Int J Agric Crop Sci 6(4):197–202

    CAS  Google Scholar 

  • Epelde L et al (2008) Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Sci Total Environ 401:21–28

    Article  CAS  PubMed  Google Scholar 

  • Farid M et al (2013) EDTA assisted phytoremediation of cadmium, lead and zinc. Int J Agron Plant Prod 4(11):2833–2846

    Google Scholar 

  • Fonseca R, Diaz C, Castillo M, Candia J, Truong P (2006) ‘Preliminary Results of pilot studies on the use of vetiver grass for mine rehabilitation in chile’. Proc. ICV4, Caracas, Venezuela

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Biores Technol 77:229–236

    Article  CAS  Google Scholar 

  • Ghosh K, Sarkar S, Brahmachari K, Sudipta POREL (2018) Standardizing row spacing of vetiver for river bank stabilization of lower ganges. Curr J Appl Sci Technol 26(2):1–13

    Article  Google Scholar 

  • Glinska S et al (2014) The Effect of EDTA and EDDS on lead uptake and localization in hydroponically grown Pisum Sativum L. Acta Physiol Plant 36:399–408

    Article  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut R 20:2150–2161. https://doi.org/10.1007/s11356-013-1485-4

    Article  CAS  Google Scholar 

  • Hall J (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. https://doi.org/10.1093/jexbot/53.366.1

    Article  CAS  PubMed  Google Scholar 

  • Hariyadi BW, Nizak F, Nurmalasari IR, Kogoya Y (2019) Effect of dose and time of npk fertilizer application on the growth and yield of tomato plants (Lycopersicum esculentum Mill). J Agric Sci Agric Eng 2(2):101–111

    Google Scholar 

  • Hindarti D, Larasati AW (2019) Copper (Cu) and Cadmium (Cd) toxicity on growth, Chlorophyll-a and carotenoid content of phytoplankton nitzschia Sp. IOP Conference Series Earth Environ Sci. https://doi.org/10.1088/1755-1315/236/1/012053

    Article  Google Scholar 

  • Houri Tarek et al (2020) Heavy metals accumulation effects on the photosynthetic performance of geophytes in mediterranean reserve. J King Saud University Sci 32(1):874–80. https://doi.org/10.1016/j.jksus.2019.04.005

    Article  Google Scholar 

  • Huang H, Gupta DK, Tian S, Yang XE, Li T (2012) Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii. Environ Sci Pollut R 19:1640–1651. https://doi.org/10.1007/s11356-011-0675-1

    Article  CAS  Google Scholar 

  • Idera F, Omotola O, Adedayo A, Paul UJ (2015) Comparison of acid mixtures using conventional wet Digestion methods for determination of heavy metals in fish tissues. J Scient Res Rep 8(7):1–9

    Google Scholar 

  • Kamari A, Pulford ID, Hargreaves JSJ (2010) Chitosan-assisted phytoextraction of heavy metal from lead / zinc tailings using lolium perenne - a preliminary study’. Heavy metals in sediments and remediation technologies [online], 461–465. Available at: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/41/131/41131214.pdf

  • Kastori R, Plesnicar M, Sakac D, Pankovic D, Arsenihjevic-Maksimovic D (1998) Effect of excess lead on sunflower growth and photosynthesis. J Plant Nutr 21(1):75–85

    Article  CAS  Google Scholar 

  • Kidd P et al (2015) Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int J Phytorem 17(11):1005–1037

    Article  CAS  Google Scholar 

  • Kinneberg DJ, Williams SR, Agarwal DP (1998) Origin and effects of impurities in high purity gold. Gold Bull 31(2):58–67

    Article  CAS  Google Scholar 

  • Kotaka S, Krueger AP (1969) Some observations on the bleaching of Ethylenediaminetetraacetic acid on green barley leaves. Plant Physiol 44(6):809–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupa Z, Baranowska M, Orzol D (1996) Can Anthocyanins be considered as heavy metal indicator in higher plants? Acta Physiol Plant 18(2):147–151

    CAS  Google Scholar 

  • Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47(295):259–266

    Article  Google Scholar 

  • Lestan D, Luo C, Li X (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 15:3e13

    Google Scholar 

  • Li Y et al (2017) EDTA-assisted phytoremediation of cadmium contaminated soil by. Adv Eng 126:869–75

    Google Scholar 

  • Liphadzi MS, Kirkham MB (2005) Phytoremediation of soil contaminated with heavy metals : a technology for rehabilitation of the environment. S Afr J Bot 71(1):24–37

    Article  CAS  Google Scholar 

  • Liphadzi MS, Kirkham MB (2006a) Heavy metal displacement in EDTA-assisted phytoremediation of biosolids soil. Water Sci Technol 54(5):147–153

    Article  CAS  PubMed  Google Scholar 

  • Liphadzi MS, Kirkham MB (2006b) Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids. S Afr J Bot 72(3):391–397

    Article  CAS  Google Scholar 

  • Liu D et al (2007) Influence of EDTA on lead transportation and accumulation by Sedum Alfredii Hance. J Biosci 62(9–10):717–724

    CAS  Google Scholar 

  • López ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL (2005) Enhancement of lead uptake by Alfalfa (Medicago Sativa) using EDTA and a plant growth promoter. Chemosphere 61(4):595–598

    Article  PubMed  Google Scholar 

  • Luo C, Shen Z, Lou L, Li X (2006) EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ Pollut 144(3):862–871

    Article  CAS  PubMed  Google Scholar 

  • Lwin Chaw Su et al (2018) Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—a critical review. Soil Sci Plant Nutrit 64(2):156–67. https://doi.org/10.1080/00380768.2018.1440938

    Article  CAS  Google Scholar 

  • Macfarlane GR (2003) Chlorophyll A Fluorescence as a potential biomarker of Zinc Stress in the Grey Mangrove, Avicennia marina. Bull Environ Contam Toxicol 70(2003):90–96

    Article  CAS  PubMed  Google Scholar 

  • Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidant Defense to lead stress in subcellular compartments of pea root cells. Acta Biochim Pol 48(2001):687–698

    Article  CAS  PubMed  Google Scholar 

  • Manios T, Stentiford EI, Millner PA (2003) The effect of heavy metals accumulation on the chlorophyll concentration of typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng 20(2003):65–74

    Article  Google Scholar 

  • Miller G et al (2008a) Assessment of the efficacy of chelate-assisted phytoextraction of lead by Coffeeweed (Sesbania Exaltata Raf.). Int J Environ Res Public Health 5(5):428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G et al (2008b) Assessment of the efficacy of chelate-assisted phytoextraction of lead by Coffeeweed ( Sesbania Exaltata Raf.). Int J Environ Res Public Health 5(5):428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza N et al (2014) Effect of EDTA on arsenic phytoextraction by Arundo Donax L. Science Vision 20(2):39–48

    Google Scholar 

  • Muradoglu F et al (2015) Cadmium toxicity affects Chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol Res 48:3–9

    Article  Google Scholar 

  • Nowack B, Schulin R, Robinson B (2006) Critical review critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40(17):5225–5232

    Article  CAS  PubMed  Google Scholar 

  • Oviedo C, Rodríguez J (2003) EDTA: the chelating agent under environmental scrutiny. Quim Nova 26(6):901–905

    Article  CAS  Google Scholar 

  • Palma LD, Mecozzi R (2007) Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. J Hazardous Mater 147:768–775

    Article  Google Scholar 

  • Ruley AT, Sharma NC, Shivendra VSAHI (2004) Antioxidant defense in a lead accumulating plant, Sesbania Drummondii. Plant Physiol Biochem 42(2004):899–906

    Article  CAS  PubMed  Google Scholar 

  • Saifullah et al (2010) Effect of ethylenediaminetetraacetic acid on growth and phytoremediative ability of two wheat varieties. Commun Soil Sci Plant Anal 41:1478–1492

    Article  Google Scholar 

  • Saifullah et al (2015) ‘Phytoremediation of Pb-contaminated soils using synthetic chelates’. Soil remediation and plants: prospects and challenges (January), 397–414

  • Sari A, Kursat M, Civelek Ş (2012) Determination of MDA levels in the plant ( Some Salvia L. Taxa growing in Turkey ). J Drug Metabol Toxicol 3(3):1–2

    Article  Google Scholar 

  • Shahid M et al (2014) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam 23:389–416

    Article  CAS  Google Scholar 

  • Shakya K, Chettri MK, Sawidis T (2008) Impact of heavy metals (Copper, Zinc, and Lead) on the Chlorophyll content of some mosses. Arch Environ Contam Toxicol 54(3):412–421

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726. https://doi.org/10.1093/jxb/erj073

    Article  CAS  PubMed  Google Scholar 

  • Shehata SM, Badawy RK, Aboulsoud YI (2019) Phytoremediation of some heavy metals in contaminated soil. Bull Natl Res Centre. https://doi.org/10.1186/s42269-019-0214-7

    Article  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41(2):168–214. https://doi.org/10.1080/10643380902718418

    Article  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta Rajiv (2011) Heavy metals and living systems : an overview. Indian J Pharmacol. https://doi.org/10.4103/0253-7613.81505

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorvari J, Sillanpaa M (1996) Influence of metal complex formation on heavy metal and free EDTA and Dtpaacute toxicity determined by Daphnia magna. Chemosphere 33(6):1119–1127

    Article  CAS  Google Scholar 

  • Sulaivani ROH, Mezori HA (2015) ‘EDTA-assisted phytoextraction of lead from artificially polluted soil by sunflower plants’. International Conference on Chemical, Civil and Environmental Engineering (CCEE-2015)

  • Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1–15

    Article  Google Scholar 

  • Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MF (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188:206. https://doi.org/10.1007/s10661-016-5211-9

    Article  PubMed  Google Scholar 

  • Wu F, Zhang G (2002) Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. J Plant Nutrit 25(6):1163–1173

    Article  CAS  Google Scholar 

  • Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with indian mustard and associated potential leaching risk. Agr Ecosyst Environ 102(3):307–318

    Article  CAS  Google Scholar 

  • Xiong ZT (1997) Bioaccumulation and physiological effects of excess lead in a roadside pioneer species Sonchus Oleraceus L. Environ Pollut 97(3):275–279

    Article  CAS  PubMed  Google Scholar 

  • Yan An et al (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11(April):1–15

    Google Scholar 

  • Yang Yan et al (2020) Response of photosynthesis to different concentrations of heavy metals in Davidia Involucrata. PLoS One 15(3):1–16. https://doi.org/10.1371/journal.pone.0228563

    Article  CAS  Google Scholar 

  • Yilmaz K, Akinci İE, Akinci S (2009) Effect of lead accumulation on growth and mineral composition of eggplant seedlings (Solarium Melongena). N Z J Crop Hortic Sci 37(3):189–199

    Article  CAS  Google Scholar 

  • Yongsheng W, Qihui L, Qian T (2011) Effect of Pb on growth, accumulation and quality component of tea plant. Procedia Eng 18:214–219. https://doi.org/10.1016/j.proeng.2011.11.034

    Article  CAS  Google Scholar 

  • Yu F, Li Y, Li F, Li C, Liu K (2019) The effects of EDTA on plant growth and manganese (Mn) accumulation in Polygonum pubescens Blume cultured in unexplored soil, mining soil and tailing soil from the Pingle Mn mine, China. Ecotoxicol Environ Safety 173:235–242

    Article  CAS  PubMed  Google Scholar 

  • Zaier H, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M, Sghair S, Abdelly C (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mater 183:609–615

    Article  CAS  PubMed  Google Scholar 

  • Zeremski-Škorić TM et al (2010) Chelate-assisted phytoextraction: effect of EDTA and EDDS on copper uptake by Brassica Napus L. J Serb Chem Soc 75(9):1279–1289

    Article  Google Scholar 

  • Zhang GP, Fukami M, Sekimoto H (2002) Influence of cadmium on mineral concentration and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crop Res 4079:1–7

    Google Scholar 

Download references

Acknowledgements

The authors thank the management of Mensin Gold Bibiani Limited for site permission.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Field experiment, data collection, and data analysis were performed by Ruth Akoto and cross-checked by Alexander K. Anning and Ebenezer J.D Belford. The first draft of the manuscript was written by Ruth Akoto and all authors contributed to the final version of the manuscript. All authors read and approved the final manuscript for submission.

Corresponding author

Correspondence to Ruth Akoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by C. L. Cespedes.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akoto, R., Anning, A.K. & Belford, E.J.D. Growth response of vetiver grass (Chrysopogon zizanioides (L.) Roberty) to chemical amendments in assisted phytoremediation of contaminated mined soil. Acta Physiol Plant 46, 51 (2024). https://doi.org/10.1007/s11738-024-03679-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-024-03679-z

Keywords

Navigation