Skip to main content
Log in

Effects of different Solanum sect. Solanum (Solanaceae) straw amendments on selenium accumulation and growth of grapevine

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

To improve the nutritional and commercial value of grape, and to meet the human body's requirement for selenium (Se), it is important to increase the absorption capacity of grapevine for Se. In this study, different straws of Solanum sect. Solanum (Solanaceae) plants (Solanum nigrum var. humile (Bernh. ex Willd.) C.Y. Wu & S.C. Huang, Solanum diphyllum L., Solanum nigrum L., and Solanum alatum Moench) were mixed into the Se-supplemented soil before planting the ‘Summer Black’ grape seedlings. Then, the physiological and Se accumulation characteristics of grapevine were studied after planting for two months in the pre-treated soil. The obtained results showed that the photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoid) content, the antioxidant enzymes (superoxide dismutase, peroxidase and catalase) activity, and the biomass of grapevine were increased by S. nigrum var. humile, S. diphyllum and S. nigrum straw amendments, while S. alatum straw amendment led to opposite results. Furthermore, grapevine Se concentration, soil pH and available soil Se concentration were also significantly improved by mixing with the straws of S. nigrum var. humile, S. diphyllum, and S. nigrum and the significant positive correlations between them were observed. In conclusion, S. nigrum var. humile, S. diphyllum, and S. nigrum straw amendments were beneficial for the growth and accumulation of Se in grapevine. In terms of Se concentration in the grapevine, the S. nigrum straw amendment had the best promoting effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608

    Article  PubMed  Google Scholar 

  • Borrill P, Connorton JM, Balk J, Miller AJ, Sanders D, Uauy C (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:53–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinh QT, Cui Z, Huang J, Tran TAT, Wang D, Yang W, Zhou F, Wang M, Yu D, Liang D (2018) Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int 112:294–309

    Article  CAS  PubMed  Google Scholar 

  • Dinh QT, Wang M, Tran TAT, Zhou F, Wang D, Zhai H, Peng Q, Xue M, Du Z, Bañuelos GS, Lin ZQ, Liang D (2019) Bioavailability of selenium in soil-plant system and a regulatory approach. Crit Rev Environ Sci Technol 49(6):443–517

    Article  CAS  Google Scholar 

  • Feng T, Chen SS, Gao DQ, Liu GQ, Bai HX, Li A, Peng LX, Ren ZY (2015) Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). Photosynthetica 53:609–612

    Article  CAS  Google Scholar 

  • Fernandes KFM, Berton RS, Coscione AR (2014) Selenium biofortification of rice and radish: effect of soil texture and efficiency of two extractants. Plant Soil Environ 60(3):105–110

    Article  Google Scholar 

  • Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 11:2074–2087

    Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18(4):309–318

    Article  CAS  PubMed  Google Scholar 

  • Hatamian M, Nejad AR, Kafi M, Souri MK, Shahbazi K (2020) Nitrate improves hackberry seedling growth under cadmium application. Heliyon 6(1):e03247

    Article  PubMed  PubMed Central  Google Scholar 

  • Heijboer A, Berge HFMT, Ruiter PCD, Jørgensen HB, Kowalchuk GA, Bloem J (2016) Plant biomass, soil microbial community structure and nitrogen cycling under different organic amendment regimes; a 15N tracer-based approach. Appl Soil Ecol 107:251–260

    Article  Google Scholar 

  • Huang W, Bai Z, Hoefel D, Hu Q, Lv X, Zhuang G, Xu S, Qi H, Zhang H (2012) Effects of cotton straw amendment on soil fertility and microbial communities. Front Environ Sci Eng 6(3):336–349

    Article  Google Scholar 

  • Huang K, Gao X, Xiao L, Shu J, Li Q, Liao M (2019) Effects of Solanum nigrum, Crassocephalum crepidioides and Bidens pilosa straws on the nutrients content of soil and grape seedlings under cadmium stress. E3S Web of Conf 136:07011–07014

    Article  CAS  Google Scholar 

  • Huang K, Han J, Huang Y, Jing Q, Li A, Liao M (2020) Comparison of selenium accumulation in three Solanum species. IOP Conf Ser Earth Environ Sci 446:032009–032012

    Article  Google Scholar 

  • Jin ZX, Sun TY, Sun H, Yue QY, Yao YX (2016) Modifications of ‘Summer Black’ grape berry quality as affected by the different rootstocks. Sci Hortic 210:130–137

    Article  Google Scholar 

  • Karimi R, Ghabooli M, Rahimi J, Amerian M (2020) Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. J Plant Nutr 43(14):2226–2242

    Article  CAS  Google Scholar 

  • Kieliszek M, Błażejak S (2013) Selenium: significance and outlook for supplementation. Nutrition 29(5):713–718

    Article  CAS  PubMed  Google Scholar 

  • Lehotai N, Lyubenova L, Schröder P, Feigl G, Ördög A, Szilágyi K, Erdei L, Kolbert Z (2016) Nitro-oxidative stress contributes to selenite toxicity in pea (Pisum sativum L). Plant Soil 400:107–122

    Article  CAS  Google Scholar 

  • Li HS (2000) Principles and techniques of plant physiological biochemical experiment. Higher Education Press, Beijing

    Google Scholar 

  • Li H, Dai M, Dai S, Dong X (2018) Current status and environment impact of direct straw return in China’s cropland—a review. Ecotoxicol Environ Saf 159:293–300

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Fan R, Peng X, Shu J, Liu L, Wang J, Lin L (2022) Salicylic acid alleviates selenium stress and promotes selenium uptake of grapevine. Physiol Mol Biol Plants 28:625–635

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin L, Li Z, Wang J, Liang D, Xia H, Lv X, Tang Y, Wang X, Deng Q, Liao M (2023) 24-epibrassinolide promotes selenium uptake in grapevine under selenium stress. Sci Hortic 308:111564

    Article  CAS  Google Scholar 

  • Liu L, Wang T, Sui L, Liu J, Lin L, Liao M (2019) The selenium accumulation characteristics of grape seedlings. IOP Conf Ser Earth Environ Sci 330:042042

    Article  Google Scholar 

  • Liu P, Huang KW, Dai JT, Li R, Wang JY, Cheng Q, Wang YX, Liao MA, Lin LJ (2021) Effects of applying Pterocypsela laciniata straw on growth and selenium accumulation of grape seedlings. J Hum Agric Univ (Natl Sci) 47(1):35–39

    Google Scholar 

  • Manaf HH (2016) Beneficial effects of exogenous selenium, glycine betaine and seaweed extract on salt stressed cowpea plant. Ann Agric Sci 61(1):41–48

    Article  Google Scholar 

  • Mellem JJ, Baijnath H, Odhav B (2012) Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. Afr J Agric Res 7(4):591–596

    Google Scholar 

  • Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran LSP (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223

    Article  CAS  PubMed  Google Scholar 

  • Padmaja K, Somasekharaiah B, Prasad A (1995) Inhibition of chlorophyll synthesis by selenium: involvement of lipoxygenase mediated lipid peroxidation and antioxidant enzymes. Photosynthetica 31:1–7

    CAS  Google Scholar 

  • Pérez-sirvent C, Martínez-sánchez MJ, García-lorenzo ML, Molina J, Tudela ML, Mantilla W, Bech J (2010) Selenium content in soils from Murcia Region (SE, Spain). J Geochem Explor 107(2):100–109

    Article  Google Scholar 

  • Pilon-smits EAH, Leduc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20(2):207–212

    Article  CAS  PubMed  Google Scholar 

  • Puccinelli M, Malorgio F, Pezzarossa B (2017) Selenium enrichment of horticultural crops. Molecules 22(6):933–950

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva VM, Boleta EHM, Lanza MGDB, Lavres J, Martins JT, Santos EF, Santos FLMD, Putti FF, Junior EF, White PJ, Broadley MR, Carvalho HWPD, Reis ARD (2018) Physiological, biochemical, and ultrastructural characterization of selenium toxicity in cowpea plants. Environ Exp Bot 150(6):172–182

    Article  CAS  Google Scholar 

  • Souri MK, Hatamian M (2017) Aminochelates in plant nutrition: a review. J Plant Nutr 42(1):67–78

    Article  Google Scholar 

  • Souri MK, Alipanahi N, Hatamian M, Ahmadi M, Tesfamariam T (2018) Elemental profile of heavy metals in garden cress, coriander, lettuce and spinach, commonly cultivated in Kahrizak, south of Tehran-Iran. Open Agric 3(1):32–37

    Article  Google Scholar 

  • Souri MK, Hatamian M, Tesfamariam T (2019) Plant growth stage influences heavy metal accumulation in leafy vegetables of garden cress and sweet basil. Chem Biol Technol Agric 6:25–31

    Article  CAS  Google Scholar 

  • Sun RL, Zhou QX, Jin CX (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134

    Article  CAS  Google Scholar 

  • Sun X, Wang Y, Han G, Ye S, Zhou X (2020) Effects of different selenium forms on selenium accumulation, plant growth, and physiological parameters of wild peach. S Afr J Bot 131:437–442

    Article  CAS  Google Scholar 

  • Vinceti M, Filippini T, Wise LA (2018) Environmental selenium and human health: an update. Curr Environ Health Rep 5:464–485

    Article  PubMed  Google Scholar 

  • Wang D, Xue MY, Wang YK, Zhou DZ, Tang L, Cao SY, Wei YH, Yang C, Liang DL (2019) Effects of straw amendment on selenium aging in soils: mechanism and influential factors. Sci Total Environ 657:871–881

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, Deng Q, Mao M, Xia H, Wang J, Lv X, Wang Y, Zhang H, Zhang X, Luo X (2021) Living plants and straws of four hyperaccumulator plants increase the cadmium uptake of Ziziphus acidojujuba seedlings. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1882450

    Article  Google Scholar 

  • Wei T, Zhang P, Wang K, Ding R, Yang B, Nie J, Jia Z, Han Q (2015) Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS One 10(4):e0120994–e0121008

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Frankenberger WT (2003) Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. Sci Total Environ 305(1–3):207–216

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Shi W, Wang X (2006) Difference in selenite absorption between high- and low- selenium rice cultivars and its mechanism. Plant Soil 282:183–193

    Article  CAS  Google Scholar 

  • Zhang S, Wang Y, Shen Q (2018) Influence of straw amendment on soil physicochemical properties and crop yield on a consecutive mollisol slope in northeastern China. Water 10(5):559–574

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Sichuan Provincial Science and Technology Program (2022YFN0005, 2020JDPT0004), Sichuan Fruit Innovation Team (sccxtd-04) and Chengdu Agricultural Science and Technology Talent Cultivation Project (2023–2025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Liu or Ming’an Liao.

Additional information

Communicated by L. Bavaresco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Chen, X., Zhang, R. et al. Effects of different Solanum sect. Solanum (Solanaceae) straw amendments on selenium accumulation and growth of grapevine. Acta Physiol Plant 45, 144 (2023). https://doi.org/10.1007/s11738-023-03627-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-023-03627-3

Keywords

Navigation