Skip to main content

Advertisement

Log in

Crop nitrogen (N) utilization mechanism and strategies to improve N use efficiency

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Nitrogen (N) is an essential plant macro-nutrient for crop sustainability and productivity. Substantial quantities of N fertilizers are being applied in soil, but only about 33% is utilized by the plants. Its availability in soil varies to a great extent in terms of time and space. Plant root systems should efficiently respond to fluctuating N by tailoring root growth and development. However, N fertilizer production consumes massive energy resource, and excessive application has negative consequences on the environment and human health. Therefore, innovative solutions are imperative to enhance crop yields and N use efficiency (NUE) simultaneously, while maintaining and/or reducing N application amount. Crop NUE is a complex attribute, because it is controlled by numerous genetic as well as environmental factors interact to govern the mechanisms involved in N sensing, uptake, translocation, assimilation, and remobilization in plants. Hence, a better understanding of these mechanisms is a key factor for improving NUE in cropping systems. In this review, we discussed the molecular, biochemical, and enzymatic mechanisms involved in NUE in crop plants, ways to increase NUE through the identification of plant factors with special consideration of their interaction, and different management strategies. In addition, adaptation of classical approaches, i.e., root architecture studies, quantitative trait loci (QTLs), and selection of genes for better NUE, are briefly discussed. Broadly, from root uptake to accumulation of N assimilates in various plant tissues, an array of physiological mechanisms is involved which is still not fully understood. Moreover, employing an integrated approach by combining expertise from fundamental and applied investigations in crop sciences may add further to available knowledge regarding crop N utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  • Acharya M (2018) Nitrogen and water use efficiency in conservation agriculture. Int J Appl Sci Biotechnol 6:63–66

    Article  Google Scholar 

  • Allen S, Guo M, Lousart D, Rup M, Wang H (2016) Enhanced nitrate uptake and nitrate translocation by over-expressing maize functional low-affinity nitrate transporters in transgenic maize. US Patent 2016010101 A

  • Andrews M, Raven JA, Lea PJ (2013) Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann Appl Biol 163:174–199

    Article  CAS  Google Scholar 

  • Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, Kondo M, Uga Y (2014) Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Sci Rep 4:5563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araya T, von Wiren N, Takahashi H (2014) CLE peptides regulate lateral root development in response to nitrogen nutritional status of plants. Plant Signal Behav 9:e29302

    Article  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian V, Makarim AK, Karthamadtja S, Zaini Z, Nguyen NH, Tan PS, Heong K.L, Buresh RJ (2002) Integrated resource management in Asian rice farming for enhanced profitability, efficiency and environmental protection. In: Poster paper presented at the First International Rice Congress, Beijing, 15–19, September 2002, IRRI, LosBanos, Philippines

  • Benini S, Rypniewski WR, Wilson KS, Mangani S, Ciurli S (2014) Molecular details of urease inhibition by boric acid: insights into the catalytic mechanism. J Am Chem Soc 126:3714–3715

    Article  Google Scholar 

  • Bertheloot J, Wu Q, Cournède PH, Andrieu B (2011) NEMA, a functional-structural model of nitrogen economy within wheat culms after flowering, II. Evaluation and sensitivity analysis. Ann Bot 108:1097–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi YM, Kant S, Clark J, Gidda S, Ming GF (2009) Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant Cell Environ 32:1749–1760

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJ (2015) The increasing importance of distinguishing among plant nitrogen sources. Curr Opin Plant Biol 25:10–16

    Article  CAS  PubMed  Google Scholar 

  • Brauer EK, Rochon A, Bi YM, Bozzo GG, Rothstein SJ, Shelp BJ (2011) Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiol Plant 14:361–372

    Article  Google Scholar 

  • Cai HM, Xiao JH, Zhang QF, Lian XM (2010) Co-suppressed glutamine synthetase2 gene modifies nitrogen metabolism and plant growth in rice. Chin Sci Bull 55:823–833

    Article  CAS  Google Scholar 

  • Cantarella H, Otto R, Soares JR, Silva AGB (2018) Agronomic efficiency of NBPT as a urease inhibitor: a review. J Adv Res 13:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao HL, Yan TM, Qiao J, Zhu NY (2016) Comprative study on effect of dicyandiamide inhibiting nitrifcation in fluvo-aquic soil and lime concretion black soil. J Ecol Rural Environ 32:110–114

    CAS  Google Scholar 

  • Carison J, Phillips C (2021) Soil nitrogen supply. IOP Publishing Soil Quality. http://soilquality.org.au/factsheets/soil-nitrogen-supply. Accessed 30 July 2022

  • Carvalho M, Lourenço E (2014) Conservation agriculture–a Portuguese case study. J Agron Crop Sci 200:317–324

    Article  Google Scholar 

  • Carvalho JFC, Madgwick PJ, Powers SJ, Keys AJ, Lea PJ (2011) An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnol 11:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO J Hum Environ 31:132–140

    Article  Google Scholar 

  • Castro-Rodriguez V, Assaf-Casals I, Perez-Tienda J, Fan XR, Avila C, Miller A, Canovas FM (2016) Deciphering the molecular basis of ammonium uptake and transport in maritime pine. Plant Cell Environ 39:1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Chardon F, Barthelemy J, Daniel-Vedele F, Masclaux-Daubresse C (2010) Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. J Exp Bot 61:2293–2302

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Mao A, Zhang Y, Zhang L, Chang J, Gao H, Thompson ML (2017) Carbon and nitrogen forms in soil organic matter influenced by incorporated wheat and corn residues. Soil Sci Plant Nutr 63:377–387

    Article  CAS  Google Scholar 

  • Chen KE, Chen HY, Tseng CS, Tsay YF (2020) Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nat Plants 6:1126–1135

    Article  CAS  PubMed  Google Scholar 

  • Chiasson DM, Loughlin PC, Mazurkiewicz D, Fedorova EE, Okamoto M (2014) SoybeanSAT1 (Symbiotic AmmoniumTransporter1) encode sabHLH transcription factor involved in nodule growth and NH4+ transport. Proc Natl Acad Sci 111:4814–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuan L, He P, Zhao T, Zheng H, Xu X (2016) Agronomic characteristics related to grain yield and nutrient use efficiency for wheat production in China. PLoS ONE 2016:e0162802

    Article  Google Scholar 

  • Cui M, Sun XC, Hu CX, Di HJ, Tan QL, Zhao CS (2011) Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide. J Soils Sed 11:722–730

    Article  CAS  Google Scholar 

  • David LC, Dechorgnat J, Berquin P, Routaboul JM, Debeaujon I, Daniel-Vedele F, Ferrario-Méry S (2014) Proanthocyanidin oxidation of Arabidopsis seeds is altered in mutant of the high-affinity nitrate transporter NRT2.7. J Exp Bot 65:885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dendooven L, Patino-Zuniga L, Verhulst N, Luna-Guido M, Marsch R, Govaerts B (2012) Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agri Eco Environ 152:50–58

    Article  Google Scholar 

  • Drechsler N, Zheng Y, Bohner A, Nobmann B, von Wirén N, Kunze R, Rausch C (2015) Nitrate-dependent control of shoot K homeostasis by the nitrate transporter1/peptide transporter family member NPF7.3/NRT1.5 and the stelar K+ outward rectifier SKOR in Arabidopsis. Plant Physiol 169:2832–2847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fageria NK (2012) Role of soil organic matter in maintaining sustainability of cropping systems. Commun Soil Sci Plant Anal 43:2063–2113

    Article  CAS  Google Scholar 

  • Fan X, Jia L, Li Y, Smith SJ, Miller AJ, Shen Q (2007) Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J Exp Bot 58:1729–1740

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu X (2017) Plant nitrate transporters: from gene function to application. J Exp Bot 68:2463–2475

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Yan M, Fan X, Li B, Shen Q, Miller AJ, Xu G (2011) Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62:2319–2332

    Article  CAS  PubMed  Google Scholar 

  • Ferrario-Méry S, Valadier MH, Godfroy N, Miallier D, Hirel B, Foyer CH, Suzuki A (2002) Diurnal changes in ammonia assimilation in transformed tobacco plants expressing ferredoxin-dependent glutamate synthase mRNA in the antisense orientation. Plant Sci 112:524–530

    Google Scholar 

  • Ferreira LM, de Souza VM, Tavares OCH, Zonta E, Santa-Catarina C, de Souza SR, Fernandes MS, Santos LA (2015) OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotech Rep 9:221–229

    Article  Google Scholar 

  • Fowler D, Coyle M, Skiba U (2013) The global nitrogen cycle in the twenty-first century. Phil Trans R Soc b 368:20130164

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraisier V, Gojon A, Till P, Daniel-Vedele F (2000) Constitutive expression of a putative high-affinity nitrate transporter in Nicotian aplumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source. Plant J 23:489–496

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Yi H, Bao J, Gong J (2015) LeNRT2.3 functions in nitrate acquisition and long-distance transport in tomato. FEBS Lett 589:1072–1079

    Article  CAS  PubMed  Google Scholar 

  • Gaufichon L, Marmagne A, Belcram K, Yoneyama T, Sakakibara Y, Hase T, Grandjean O, Clement G, Citerne S (2017) ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds. Plant J 91:371–393

    Article  CAS  PubMed  Google Scholar 

  • Ghaly AE, Ramakrishnan VV (2015) Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: a critical review. J Pollut Eff Cont 3:136

    Google Scholar 

  • Giehl RFH, Laginha AM, Duan F, Rentsch D, Yuan L, von Wiren N (2017) A critical role of AMT2;1 in root-to-shoot translocation of ammonium in Arabidopsis. Mol Plant 10:1449–1460

    Article  CAS  PubMed  Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good GA, Johnson SJ, De Pauw M, Carroll RT, Savidov N (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85:252–262

    Article  CAS  Google Scholar 

  • Guan PZ, Wang RC, Nacry P et al (2014) Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proc Natl Acad Sci USA 111:15267–15272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan M, de Bang TC, Pedersen C, Schjoerring JK (2016) Cytosolic glutamine synthetase Gln1;2 is the main isozyme contributing to GS1 activity and can be upregulated to relieve ammonium toxicity. Plant Physiol 171:1921–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guseman JM, Webb K, Srinivasan C, Dardick C (2017) DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J 89:1093–1105

    Article  CAS  PubMed  Google Scholar 

  • Hammes UZ, Nielsen E, Honaas LA, Taylor CG, Schachtman DP (2006) AtCAT6, sink-tissue localized transporter for essential amino acids in Arabidopsis. Plant J 48:414–426

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford MJ (2014) Reducing the reliance on nitrogen fertilizer for wheat production. J Cereal Sci 59:276–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Qu B, Li W, Zhao X, Teng W, Ma W, Ren Y, Li B, Li Z, Tong Y (2015) The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol 169:1991–2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera JM, Rubio G, Häner L, Delgado JA, Lucho-Constantino CA, Islas-Valdez S, Pellet D (2016) Emerging and established technologies to increase nitrogen use efficiency of cereals. Agron 6:25

    Article  Google Scholar 

  • Hirel B, Tetu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485

    Article  CAS  Google Scholar 

  • Hu B, Wang W, Ou S et al (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47:834–838

    Article  CAS  PubMed  Google Scholar 

  • Hu MY, Zhao XQ, Liu Q, Hong X, Zhang W, Zhang YJ, Sun LJ (2018) Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnol J 16:1858–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Gu MH, Xu SH, Yang WF, Jiang LG (2012) Effects of no tillage and rice-seedling casting with rice straw returning on content of nitrogen, phosphorus and potassium of soil profiles. Sci Agric Sin 13:10

    Google Scholar 

  • Jat RA, Suhas P, Wani KL, Sahrawat PS, Dhaka SR, Dhaka BL (2011) Recent approaches in nitrogen management for sustainable agricultural production and eco-afety. Arch Agron Soil Sci 58:1033–1060

    Article  Google Scholar 

  • Jia Z, Wiren NV (2020) Signaling pathways underlying nitrogen dependent changes in root system architecture: from model to crop species. J Exp Bot. https://doi.org/10.1093/jxb/eraa033

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia ZT, Giehl RFH, Meyer RC et al (2019) Natural variation of BSK3 tunes brassinosteroid signaling to regulate root foraging under low nitrogen. Nat Commun 10:2378

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Lu D, Zu C, Shen J, Wang S, Guo Z, Wang H (2018) One-time root-zone N fertilization increases maize yield, NUE and reduces soil N losses in lime concretion black soil. Sci Rep 8:10258

    Article  PubMed  PubMed Central  Google Scholar 

  • Karki TB, Shrestha J (2015) Should we go for conservation agriculture in Nepal. Int J Glob Sci Res 2:271–276

    Google Scholar 

  • Kashiri HO, Kumar D (2017) Coating of essential oils onto prilled urea retards its nitrification in soil. Arch Agron Soil Sci 63:96–105

    Article  CAS  Google Scholar 

  • Khatak SI, Baloch MS, Naveed K, Khan EA (2017) Improving farmer’s income and nitrogen use efficiency of dry land wheat through soil and foliar application of N-Fertilizer. Sarhad J Agric 33:344–349

    Article  Google Scholar 

  • Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57:707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Feria-Bourrellier AB, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Brehaut V, Miller A, Daniel-Vedele F, Sakakibara H (2012) The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen starved plants. Plant Cell 24:245–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killorn R, Gonzalez M, Rueber D (2011) Effect of slow release N fertilizer on corn yield. Iowa State University, Northern Research and Demonstration Farm, Manske 8

  • Komainda M, Taube F, Klub C, Herrmann A (2018) Effects of catch crops on silage maize (Zea mays L.): yield, nitrogen uptake efficiency and losses. Nutr Cycl Agroecosyst 110:51–69

    Article  CAS  Google Scholar 

  • Krall AS, Xu S, Graeber TG, Braas D, Christofk HR (2016) Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun 7:11457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Boil 25:115–122

    Article  CAS  Google Scholar 

  • Kurai T, Wakayama M, Abiko T, Yangisawa S, Aoki N, Ohsugi R (2011) Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol J 9:826–837

    Article  CAS  PubMed  Google Scholar 

  • Laine M, Rutting T, Alakukku L, Palojarvi A, Strommer R (2018) Process rates of nitrogen cycle in uppermost topsoil after harvesting in no-tilled and ploughed agricultural clay soil. Nutr Cycl Agroecosyst 110:39–49

    Article  CAS  Google Scholar 

  • Lam HM, Wong P, Chan HK, Yam KM, Chen L, Chow CM, Coruzzi GM (2003) Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physiol 132:926–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lea US, Hoopen F, Provan F, Kaiser WM, Meyer C (2004) Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue. Planta 219:59–65

    Article  CAS  PubMed  Google Scholar 

  • Lee BR, Lee DG, Avice JC, Kim TH (2014) Characterization of vegetative storage protein (VSP) and low molecular proteins induced by water deficit in stolon of white clover. Biochem Biophys Res Commun 443:229–233

    Article  CAS  PubMed  Google Scholar 

  • Lehmann T, Ratajczak L (2008) The pivotal role of glutamate dehydrogenase (GDH) in the mobilization of N and C from storage material to asparagine in germinating seeds of yellow lupine. J Plant Physiol 165(2):149–158

    Article  CAS  PubMed  Google Scholar 

  • Lehmann S, Gumy C, Blatter E, Boeffel S, Fricke W, Rentsch D (2011) In planta function of compatible solute transporters of the AtProT family. J Exp Bot 62:787–796

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre T, Gaufichon L, Boutet-Mercey S, Christ A, Masclaux-Daubresse C (2008) Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession. Plant Cell Physiol 49:1056–1065

    Article  CAS  PubMed  Google Scholar 

  • Leran S, Garg B, Boursiac Y, Corratgé-Faillie C, Brachet C, Tillard P (2015) AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo. Sci Rep 5:7962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lezhneva L, Kiba T, Feria-Bourrellier AB, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A (2014) The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant J 80:230–241

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass AD (2007) Dissection of the AtNRT2.1:AtNRT2.2 induciblehigh-affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Li J, Huang HM, Li LG et al (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li PC, Chen FJ, Cai HG, Liu JC, Pan QC, Liu ZG, Gu RL, Mi GH, Zhang FS, Yuan LX (2015a) A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. J Exp Bot 66:3175–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Ouyang J, Wang YY, Hu R, Xia K, Duan J, Wang Y, Tsay YF, Zhang M (2015b) Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci Rep 5:9635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Tang Z, Wei J, Qu HY, Xie YJ, Xu GH (2016) The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. J Genet Genom 43:639–649

    Article  Google Scholar 

  • Li L, Kong F, Wu Y, Feng D, Jichao Y (2020) Increasing nitrogen accumulation and reducing nitrogen loss with N-efficient maize cultivars. Plant Prod Sci 23:260–269

    Article  CAS  Google Scholar 

  • Lin HC, Huber JA, Gerl G, Hulsbergen KJ (2016) Nitrogen balances and nitrogen-use efficiency of different organic and conventional farming systems. Nutr Cycl Agroecosyst 105:1–23

    Article  CAS  Google Scholar 

  • Liu R, Zhang H, Zhao P, Zhang Z, Liang W, Tian Z (2012) Mining of candidate maize genes for nitrogen use efficiency by integrating gene expression and QTL data. Plant Mol Biol Rep 30:297–308

    Article  CAS  Google Scholar 

  • Liu B, Ren T, Lu J, Li X, Cong R, Wu L (2017) On-farm trials of site-specific N management for maximum winter oilseed rape (Brassica napus L.) yield. J Plant Nutr 40:1300–1311

    Article  CAS  Google Scholar 

  • Liu T, Ren T, White PJ, Cong R, Lu J (2018) Storage nitrogen coordinates leaf expansion and photosynthetic capacity in winter oilseed rape (Brassica napus L.). J Exp Bot 69:2995–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Liu H, Li W, Zhao Q, Dai J, Tian L, Dong H (2018) Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res 218:150–157

    Article  Google Scholar 

  • Lynch MJ, Mulvaney MJ, Hodges SC, Thompson TL, Thomason WE (2016) Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti. Springerplus 5:973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma WY, Li JJ, Qu BY, He X, Zhao XQ, Li B, Fu X, Tong Y (2014) Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J 78:70–79

    Article  CAS  PubMed  Google Scholar 

  • Maqsood MA, Awan UK, Aziz T, Arshad H, Ashraf N, Ali M (2016) Nitrogen management in calcareous soils: problems and solutions. Pak J Agric Sci 53:79–95

    Google Scholar 

  • Marschner H (2012) Mineral nutrition of higher plants, 5th edn. Academic Press, London

    Google Scholar 

  • Martin A, Lee J, Kichey T, Gerentes D, Zivy M et al (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18:3252–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K et al (2006) Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol 140:444–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Masumoto C, Miyazawa SI, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M (2010) Phosphoenol pyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. PNAS 107:5226–5231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena SK, Rakshit A, Meena VJ (2016) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocat Agri Biotechnol 6:68–75

    Article  Google Scholar 

  • Mehmood A, Niazi MBK, Hussain A, Beig B, Jahan Z, Zafar N, Zia M (2019) Slow-release urea fertilizer from sulfur, gypsum, and starch-coated formulations. J Plant Nutr 42:1218–1229

    Article  CAS  Google Scholar 

  • Meng S, Peng JS, He YN, Zhang B, Yi HY, Fu YL, Gong JM (2016) Arabidopsis NRT1.5 mediates the suppression of nitrate starvation induced leaf senescence by modulating foliar potassium level. Mol Plant 9:461–470

    Article  CAS  PubMed  Google Scholar 

  • Mlodzinska E, Klobus G, Christensen MD, Fuglsang AT (2015) The plasma membrane Hþ-ATPase AHA2 contributes to the root architecture in response to different nitrogen supply. Physiol Plant 154:270–282

    Article  CAS  PubMed  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Article  Google Scholar 

  • Mounier E, Pervent M, Ljung K, Gojon A, Nacry P (2014) Auxinmediated nitrate signaling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant Cell Environ 37:162–174

    Article  CAS  PubMed  Google Scholar 

  • Myrach T, Zhu A, Witte C (2017) The assembly of the plant urease activation complex and the essential role of the urease accessory protein G (UreG) in delivery of nickel to urease. J Biol Chem 292:14556–14565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1–29

    Article  CAS  Google Scholar 

  • Neina D (2019) The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci 2009:1–9

    Article  Google Scholar 

  • Nie YX, Wang MC, Zhang W, Ni Z, Hashidoko Y, Shen WJ (2018) Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment. Sci Total Environ 624:407–415

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    Article  CAS  PubMed  Google Scholar 

  • O’Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez RA (2016) Nitrate transport, sensing, and responses in plants. Mol Plant 9:837–856

    Article  PubMed  Google Scholar 

  • Oelofse M, Markussen B, Knudsen L, Schelde K, Olesen JE, Jensen LS, Bruun S (2015) Do soil organic carbon levels affect potential yields and nitrogen use efficiency? An analysis of winter wheat and spring barley field trials. Eur J Agron 66:62–73

    Article  CAS  Google Scholar 

  • Ohyama T (2010) Nitrogen as a major essential element of plants. In: Ohyama T, Sueyoshi K (eds), Nitrogen assimilation in plants. Research Singpot, Kerala, pp. 1–18.

  • Okumoto S, Pilot G (2011) Amino acid export in plants: a missing link in nitrogen cycling. Mol Plant 3:453–463

    Article  Google Scholar 

  • Olofsson M, Robertson EK, Edler L, Arniborg L, Whitehouse MJ, Ploug H (2019) Nitrate and ammonium fluxes to diatoms and dinoflagellates at a single cell level in mixed field communities in the sea. Sci Rep 9:1424

    Article  PubMed  PubMed Central  Google Scholar 

  • Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002) Nitrate transport in plants: which gene and which control? J Exp Bot 53:825–833

    Article  CAS  PubMed  Google Scholar 

  • Oyebiyi FB, Aula L, Omara P, Nambi E, Dhillon JS, Raun WR (2019) Maize (Zea mays L.) grain yield response to methods of nitrogen fertilization. Commun Soil Sci Plant Anal 50:2694–2700

    Article  CAS  Google Scholar 

  • Pal R, Mahaj G, Sardana V, Chahan B (2017) Impact of sowing date on yield, dry matter and nitrogen accumulation, and nitrogen translocation in dry-seeded rice in North West India. Field Crops Res 206:138–148

    Article  Google Scholar 

  • Pan X, Baquy M, Guan P et al (2020) Effect of soil acidification on the growth and nitrogen use efficiency of maize in Ultisols. J Soils Sediments 20:1435–1445

    Article  CAS  Google Scholar 

  • Papadopoulos A, Kalivas D, Hatzichristos T (2015) GIS modelling for site-specific nitrogen fertilization towards soil sustainability. Sustainability 7:6684–6705

    Article  Google Scholar 

  • Pasam RK, Sharma R, Malosetti M, vanEeuwijk FA, Haseneyer G, Kilian B (2012) Genome-wide association studies for agronomical traits in a worldwide spring barley collection. BMC Plant Biol 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasley HR, Cairns JE, Camberato JJ et al (2019) Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. Nutr Cycl Agroecosyst 115:373–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perchlik M, Tegeder M (2017) Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiol 175:235–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perchlik M, Foster J, Tegeder M (2014) Different and overlapping functions of Arabidopsis LHT6 and AAP1 transporters in root amino acid uptake. J Exp Bot 65:5193–5204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pii Y, Tanja M, Nicola T, Roberto T, Stefano C, Carmine C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fert Soils 51:403–415

    Article  CAS  Google Scholar 

  • Pike S, Gao F, Kim MJ, Kim SH, Schachtman DP, Gassmann W (2014) Members of the NPF3 transporter subfamily encode pathogeninducible nitrate/nitrite transporters in grapevine and Arabidopsis. Plant Cell Physiol 55:162–170

    Article  CAS  PubMed  Google Scholar 

  • Pinton R, Tomasi N, Zanin L (2016) Molecular and physiological interactions of urea and nitrate uptake in plants. Plant Signal Behav 11:1076603

    Article  Google Scholar 

  • Pires MV, da Cunha DA, deMatos CS, Costa MH (2015) Nitrogen-use efficiency, nitrous oxide emissions, and cereal production in Brazil: current trends and forecasts. PLoS ONE 10:0135234

    Article  Google Scholar 

  • Plett D, Holtham L, Baumann U et al (2016) Nitrogen assimilation system in maize is regulated by developmental and tissue-specific mechanisms. Plant Mol Biol 92:293–312

    Article  CAS  PubMed  Google Scholar 

  • Poitout A, Crabos A, Petrik I et al (2018) Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-Zeatin in shoots. Plant Cell 30:1243–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter C, Krauter C, Klooster S (2001) Statewide inventory estimates of ammonia emissions from fertilizer applications in California. In: Project report to California AIR Resources Board, Sacramento, CA. USA

  • Pratelli R, Pilot G (2014) Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot 65:5535–5556

    Article  CAS  PubMed  Google Scholar 

  • Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G (2011) Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. Plant J 65:745–756

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, El-Kereamy A, Gidda S, Bi YM, Rothstein SJ (2014) AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. J Exp Bot 65:965–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MM, Ulaganathan K (2015) Nitrogen nutrition, its regulation and biotechnological approaches to improve crop productivity. Am J Plant Sci 6:2745–2798

    Article  CAS  Google Scholar 

  • Reis S, Bekunda M, Howard CM, Karanja N, Winiwarter W, Yan X, Bleeker A, Sutton M (2016) Synthesis and review: tackling the nitrogen management challenge: from global to local scales. Environ Res Lett 11:120205

    Article  Google Scholar 

  • Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rimski-Korsakov H, Rubio G, Lavado R (2012) Fate of the nitrogen from fertilizers in field-grown maize. Nutr Cycl Agroecosyst 93:253–263

    Article  CAS  Google Scholar 

  • Rochester IJ (2011) Assessing internal crop nitrogen use efficiency in high-yielding irrigated cotton. Nutr Cycl Agroecosyst 90:147–156

    Article  Google Scholar 

  • Rogato A, D’Apuzzo E, Barbulova A, Omrane S, Parlati A (2010) Characterization of a developmental root response caused by external ammonium supply in Lotus japonicus. Plant Physiol 154:784–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago JP, Tegeder M (2017) Implications of nitrogen phloem loading for carbon metabolism and transport during Arabidopsis development. J Integr Plant Biol 59:409–421

    Article  CAS  PubMed  Google Scholar 

  • Schipanski ME, Barbercheck M, Douglas MR, Finney DM, Haider K, Kaye JP, Kemanian AR, Mortensen DA, White J (2014) A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric Syst 125:2–22

    Article  Google Scholar 

  • Schofield RA, Bi YM, Kant S, Rothstein SJ (2009) Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant Cell Environ 32:271–285

    Article  CAS  PubMed  Google Scholar 

  • Shankar A, Gupta RK, Singh B (2020) Site-specific fertilizer nitrogen management in Bt cotton using chlorophyll meter. Exp Agric 56:397–406

    Article  Google Scholar 

  • Sharma LK, Bali SK (2018) A review of methods to improve nitrogen use efficiency in agriculture. Sustain 10:51

    Article  Google Scholar 

  • Singh A, Kumar A, Jaswal A, Singh M, Gaikwad DS (2018) Nutrient use efficiency concept and interventions forimproving nitrogen use efficiency. Plant Arch 18:1015–1023

    Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, von Wirén N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1–1;3) in rice. Plant Cell Physiol 44:726–734

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Wang L, Mao H (2018) A G-protein pathway determines grain size in rice. Nat Commun 9:851

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Knaff DB (2005) Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism. Photosyn Res 83:191–217

    Article  CAS  Google Scholar 

  • Szulc P, Waligóra H, Michalski T, Rybus-Zając M, Olejarski P (2016) Efficiency of nitrogen fertilization based on the fertilizer application method and type of maize cultivar (Zea mays L.). Plant Soil Environ 62:135–142

    Article  CAS  Google Scholar 

  • Takahashi M, Sasaki Y, Morikawa H (2001) Nitrite reductase gene enrichment improves assimilation of NO2 in Arabidopsis. Plant Physiol 126:731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura W, Kojima S, Toyokawa A, Watanabe H, Kobayashi M, Hayakawa T (2011) Disruption of a Novel NADH-Glutamate Synthase2 gene caused marked reduction in spikelet number of rice. Front Plant Sci 2:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan QM, Zhang LZ, Grant J, Cooper P, Tegeder M (2010) Increased phloem transport of S-methylmethioninepositively affects sulfur and nitrogen metabolism and seed development in pea plants. Plant Physiol 154:1886–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Fan X, Li Q, Feng H, Miller AJ, Shen Q, Xu G (2012) Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol 160:2052–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taochy C, Gaillard I, Ipotesi E et al (2015) The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress. The Plant J 83:466479

    Article  Google Scholar 

  • Taulemesse F, Le Gouis J, Gouache D, Gibon Y, Allard V (2015) Post flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1. PLoS ONE 10:e0120291

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G (2010) Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant J 62:641–652

    Article  CAS  PubMed  Google Scholar 

  • Tegeder M (2014) Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot 65:1865–1878

    Article  CAS  PubMed  Google Scholar 

  • Tegeder M, Masclaux-Daubresse C (2018) Source and sink mechanisms of nitrogen transport and use. New Phytol 217:35–53

    Article  PubMed  Google Scholar 

  • Tegedera M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3:997–1011

    Article  Google Scholar 

  • Tian Z, Yu L, Zhihui L, Hua G, Jian C, Dong J, Weixing C, Tingbo D (2016) Genetic improvement of nitrogen uptake and utilization of winter wheat in the Yangtze River Basin of China. Field Crops Res 196:251–260

    Article  Google Scholar 

  • Tripathi R, Nayak AK, Shahid M, Lal B, Gautam P, Raja R, Mohanty S, Kumar A, Panda BB, Sahoo RN (2015) Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. CATENA 133:128–136

    Article  CAS  Google Scholar 

  • Tyree M (2003) Plant hydraulics: the ascent of water. Nature 423:923

    Article  CAS  PubMed  Google Scholar 

  • van Bel AJE (1984) Quantification of the xylem-to-phloem transfer of amino-acids by use of inulin [14C] carboxylic acid as xylem transport marker. Plant Sci Lett 35:81–85

    Article  Google Scholar 

  • Vanoni M, Dossena L, van den Heuvel R, Curti B (2005) Structure–function studies on the complex iron-sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation. Photosyn Res 83:219–238

    Article  CAS  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Gutierrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:4477–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XL, Peng FT, Li MJ, Yang L, Li GJ (2012) Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development. J Plant Physiol 169:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Widhalm JR, Gutensohn M, Yoo H, Adebesin F, Qian YC, Guo LY, Jaini R, Lynch JH, McCoy RM, Shreve JT (2015) Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nat Commun 6:8142

    Article  PubMed  Google Scholar 

  • Winter G, Todd CD, Trovato M, Forlani G, Funck D (2015) Physiological implications of arginine metabolism in plants. Front Plant Sci 6:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Xian-Long P, Liu YY, Luo SG, Fan LC, Song TX, Guo YW (2007) Effects of site-specific nitrogen management on yield and dry matter accumulation of rice from cold areas of northeastern China. Agric Sci China 6:715–723

    Article  Google Scholar 

  • Xiaochuang C, Meiyan W, Chunquan Z et al (2020) Glutamate dehydrogenase mediated amino acid metabolism after ammonium uptake enhances rice growth under aeration condition. Plant Cell Rep 39:363–379

    Article  PubMed  Google Scholar 

  • Xing Y, Jiang W, He X, Fiaz S, Ahmad S, Lei X, Wang W, Wang Y, Wang X (2019) A review of nitrogen translocation and nitrogen-use efficiency. J Plant Nutr. https://doi.org/10.1080/01904167.1656247

    Article  Google Scholar 

  • Xu ZZ, Yu ZY, Wang D (2006) Nitrogen translocation in wheat plants under soil water deficit. Plant Soil 280:291–303

    Article  CAS  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Ann Rev Plant Biol 63:153–182

    Article  CAS  Google Scholar 

  • Xu H, Curtis TY, Powers SJ, Raffan S, Gao R, Huang J, Heiner M, Gilbert D, Halford NG (2018) Genomic, biochemical and modelling analyses of asparagine synthetases from wheat. Front Plant Sci 8:2237

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav MR, Rakesh K, Parihar CM, Yadav RK, Jat SL, Ram H, Meena RK, Singh M, Birba AP, Verma U, Kumar A (2017) Strategies for improving nitrogen use efficiency: a review. Agric Rev 38:29–40

    Google Scholar 

  • Yan M, Fan X, Feng H, Miller AJ, Shen Q, Xu G (2011) Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ 34:1360–1372

    Article  CAS  PubMed  Google Scholar 

  • Yan X et al (2014) Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen. Environ Res Lett 9:095002

    Article  CAS  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci 101:7833–7838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Nian J, Xie Q, Feng J, Zhang F, Jing H, Zhang J, Dong G, Liang Y, Peng J, Wang J, Qian Q, Zuo J (2016) Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Mol Plant 9:1520–1534

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Zhang H, Wei H, Zhang Y, Wang B, Xia K, Huo Z, Dai Q, Xu K (2007) Effects of nitrogen fertilizer on nitrogen use efficiency and yield of rice under different soil conditions. Front Agri China 1:30–36

    Article  Google Scholar 

  • Yong TW, Chen P, Dong Q, Du Q, Yang F, Wang XC, Liu WG, Yang WY (2018) Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system. J Integr Agric 17:664–676

    Article  Google Scholar 

  • Yuan L, Loque D, Ye F, Frommer WB, vonWiren N (2007) Nitrogen-dependent post transcriptional regulation of the ammonium transporter AtAMT1;1. Plant Physiol 143:732–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zha Y, Wu XP, He XH, Zhang HM, Gong FF, Cai DX, Gao H (2014) Basic soil productivity of spring maize in black soil under long-term fertilization based on DSSAT model. J Integ Agri 13:577–587

    Article  CAS  Google Scholar 

  • Zhang FS, Cui ZL, Chen XP, Ju XT, Shen JB, Chen Q, Liu XJ, Zhang WF, Mi GH, Fan MS, Jiang RF (2012) Integrated nutrient management for food security and environmental quality in China. Adv Agron 116:1–40

    Article  CAS  Google Scholar 

  • Zhang LZ, Garneau MG, Majumdar R, Grant J, Tegeder M (2015a) Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. Plant J 81:134–146

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Tan L, Zhu Z, Yuan L, Xie D, Sun C (2015b) TOND1 confers tolerance to nitrogen deficiency in rice. Plant J 81:367–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Xiong S, Wei Y (2017) The role of glutamine synthetase isozymes in enhancing nitrogen use efficiency of N-efficient winter wheat. Sci Rep 7:1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X-Q, Nie X-L, Xiao XG (2013) Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying. PLoS ONE 8:e74678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou N, Li BH, Chen H, Su Y, Kronzuker HJ, Xiong L, Baluska F, Shi W (2013) GSA-1/ARG1 protecteras root gravitropism in Arabidopsis under ammonium stress. New Phytol 200:97–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Ph.D. scholarship provided by Huazhong Agricultural University, Wuhan (CSC 2019SLJ02861), China.

Funding

Funding provided National Key Research and Development Project (Grant number: 2020YFD1001001) and Innovative Research Group Project of the National Natural Science Foundation of China (Grant number: 31771708). The authors assert that they have no known contending financial interests or personal relationships that could have appeared to impact the work described in this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Esposito.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahboob, W., Yang, G. & Irfan, M. Crop nitrogen (N) utilization mechanism and strategies to improve N use efficiency. Acta Physiol Plant 45, 52 (2023). https://doi.org/10.1007/s11738-023-03527-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-023-03527-6

Keywords

Navigation