Skip to main content
Log in

Impact of Peltigera praetextata on zucchini grown in weathered p,p'-DDE-contaminated soil and its responses

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Terricolous lichens, located in soils, can change the bioavailability of polluted soil biologically, chemically and physically with their effective enzymatic content. Their effects are unknown especially on weathered p,p'-DDE-contaminated soil. However, we obtain new information by increasing our studies on this subject. In the present study, the impact of Peltigera praetextata (a terricolous lichen) on zucchini (Cucurbita pepo spp. pepo) grown in weathered p,p'-DDE-contaminated soil was shown via its physiological responses. At the same time, the physiological responses of Peltigera praetextata were also given. The results show that the growth and development of the zucchini grown in weathered p,p'-DDE-contaminated soil was positively affected by Peltigera praetextata. Peltigera praetextata was increased the bio-usefulness of weathered p,p'-DDE-contaminated soil with its effective enzyme contents. Moreover, Peltigera praetextata was able to cope with p,p'-DDE contamination with the strong antioxidative defence system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akpınar A, Ozturk S, Sinirtaş M (2009) Effects of some terricolous lichens [Cladonia rangiformis Hoffm., Peltigera neckerii Hepp ex Müll. Arg., Peltigera rufescens (Weiss) Humb.] on soil bacteria in natural conditions. Plant Soil Environ 4:154–158

    Article  Google Scholar 

  • Akpınar A, Cansev A, Isleyen M (2020) Effects of the lichen Peltigera canina on Cucurbita pepo spp. pepo grown in soil contaminated by DDTs. Environm Sci Pollut Res. https://doi.org/10.1007/s11356-020-11665-4

    Article  Google Scholar 

  • Al Rashidi M, El Mouden O, Chakir A, Roth E, Salghi R (2011) The heterogeneous photo-oxidation of difenoconazole in the atmosphere. Atmos Environ 45:5997–6003. https://doi.org/10.1016/j.atmosenv.2011.07.062

    Article  CAS  Google Scholar 

  • Al Rashidi M, Chakir A, Roth E (2014) Heterogeneous oxidation of folpet and dimethomorph by OH radical: A kinetic and mechanistic study. Atmos Environ 82:164–171. https://doi.org/10.1016/j.atmosenv.2013.10.031

    Article  CAS  Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environm Sci Technol 34(20):4259–4265

    Article  CAS  Google Scholar 

  • Arora R, Pitchay DS, Bearce BC (1998) Water-stress-induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins? Physiol Plant 103(1):24–34

    Article  CAS  Google Scholar 

  • Asplund J, Wardle DA (2017) How lichens impact on terrestrial community and ecosystem properties. Biol Rev 92:1720–1738

    Article  PubMed  Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53(2):214–222

    Article  Google Scholar 

  • Bačkor M, Kováčik J, Dzubaj A, Bačkorová M (2003) Physiological comparison of copper toxicity in the lichens Peltigera rufescens (Weis) Humb and Cladina arbuscula subsp. Mitis (Sandst.) Ruoss. Plant Growth Regul 58:279–286

    Article  Google Scholar 

  • Balawejder M, Antos P, Czyjt-Kuryło S, Józefczyk R, Pieniazek M (2014) A novel method for degradation of DDT in contaminated soil. Ozone Sci Eng 36:166–173

    Article  CAS  Google Scholar 

  • Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophyll a and b in lichens and higher plants. Environ Exp Bot 32:85–100

    Article  CAS  Google Scholar 

  • Beuchamp C, Fridovich I (1971) Superoxide dismutase; improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  PubMed  Google Scholar 

  • Bian R, Chen D, Liu X, Cui L, Li L, Pan G, Xie D, Zheng J, Zhang X, Zheng J, Chang A (2013) Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment. Ecol Eng 58:378–383

    Article  Google Scholar 

  • Bolan NS, Adriano DC, Curtin D (2003) Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv Agron 78:215–272

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high-light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canha N, Almeida-Silva M, Freitas MC, Almeida SM, Wolterbeek HT (2014) Lichens as biomonitors at indoor environments of primary schools. J Radioanal Nucl Chem 291(1):123–128

    Article  Google Scholar 

  • Cantillana T (2009) Toxicologically important DDT metabolites: Synthesis, enantioselective analysis and kinetics. Department of Environmental Chemistry Stockholm University, Stockholm

    Google Scholar 

  • Chen J, Blume HP, Beyer L (2000) Weathering of rocks induced by lichen colonization: a review. CATENA 39:121–146

    Article  CAS  Google Scholar 

  • Chettri MK, Cook CM, Vardaka E, Sawidis T, Lanaras T (1998) The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convolute and Cladonia rangiformis. Environ Exp Bot 39:1–10

    Article  CAS  Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Environ Pollut 114:471–492

    Article  CAS  PubMed  Google Scholar 

  • Costa ET, Guimarães Guilherme LR, Chaves de Melo ÉE, Teixeira Ribeiro B, dos Santos B, Inácio E, da Costa Severiano E, Faquin V, Hale BA (2012) Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biol Trace Elem Res 145:93–100

    Article  CAS  Google Scholar 

  • Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A-302A

    Article  CAS  PubMed  Google Scholar 

  • Elman GL (1959) Tissue sulphydriyl groups. Arch Biochem Biophys 82:70–77

    Article  Google Scholar 

  • Escudero A, Martinez I, de la Cruz A, Otalora MAG, Maestre FT (2007) Soil lichens have species-specific effects on the seedling emergence of three gypsophile plant species. J Arid Environ 70(1):18–28

    Article  Google Scholar 

  • Favero-Longo SE, Piervittori R (2010) Lichen-plant interactions. J Plant Interact 5(3):163–177

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  PubMed  Google Scholar 

  • Gajewska E, Sklodowska M (2010) Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicol Environ Saf 73:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Gent MPN, White JC, Parrish ZD, Isleyen M, Eitzer BD, Mattina MI (2007) Uptake and translocation of p, p’-dichlorodiphenyldichloroethylene supplied in hydroponics solution to Cucurbita. Environ Toxicol Chem 26(12):2467–2475

    Article  CAS  PubMed  Google Scholar 

  • Glime JM (2007) Bryophyte ecology, Chapter 5–3, Ecophysiology of Development: PROTONEMA vol 1, Physiological Ecology

  • Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142(3):530–539

    Article  CAS  PubMed  Google Scholar 

  • Gulen H, Eris A (2003) Some Physiological Changes in Strawberry (Fragaria × ananassa cv. camarosa) Plants Under Heat Stress. J Hort Sci Biotech 78:894–898

    Article  Google Scholar 

  • Haga K, Lino M (2006) Asymmetric distribution of auxin correlates with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls. J Exp Bot 57(4):837–847

    Article  CAS  PubMed  Google Scholar 

  • Hao H, He Z, Li H, Shi L, Tang Y (2014) Effect of root length on epicotyl dormancy release in seeds of Paeonia ludlowii, Tibetan Peony. Ann Bot 113(3):443–452. https://doi.org/10.1093/aob/mct273

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hodson ME, Vijver MG, Peijnenbuurg WJGM (2011) Bioavailability in soils. Dealing with Contaminated Sites: From Theory towards Practical Application, 721–746

  • Hussain M, Farooq M, Nawaz A, Al-Sadi AM, Solaiman ZM, Alghamdi SS, Ammara U, Ok YS, Siddique KHM (2017) Biochar for crop production: potential benefits and risks. J Soils Sediments 17:685–716

    Article  CAS  Google Scholar 

  • Isleyen M, Sevim P, Hawthorne J, Berger W, White JC (2013) Inheritance profile of weathered chlordane and p, p-DDTs accumulation by Cucurbita pepo hybrids. Int J Phytoremediat 15(9):861–876

    Article  CAS  Google Scholar 

  • Kim HS, Kim KR, Kim HJ, Yoon JH, Yang J, Ok Y, Owens G, Kim KH (2015) Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ Earth Sci 74:1249–1259

    Article  CAS  Google Scholar 

  • Kumar D, Kumar Tripathi D, Kumar CD (2014) Phytoremediation potential and nutrient status of Barringtonia acutangula Gaerth. Tree seedlings grown under different chromium (CrVI) treatments. Biol Trace Element Res 157(2):164–174

    Article  CAS  Google Scholar 

  • Kytöviita M-M, Stark S (2009) No allelopathic effect of the dominant forest-floor lichen Cladonia stellaris on pine seedlings. Funct Ecol 23:435–441

    Article  Google Scholar 

  • Latkowska E, Chrapusta E, Bober B, Kaminski A, Adamski M, Bialczyk J (2015) Allelopathic effects of epiphytic lichen Hypogymnia physodes (L.) Nyl. colonization on the spruce (Picea abies (L.) Karst.) bark. Allelopathy J 35(1):129–138

    Google Scholar 

  • Lawrey JD (1977) Inhibition of moss spore germination by acetone extracts of terricolous Cladonia species. In Bull Torrey Botanical Club 104(1):49. https://doi.org/10.2307/2484664

    Article  Google Scholar 

  • Lawrey JD (2009) Diversity of defensive mutualisms. Chapter 11. Chemical defense in lichen symbiosis. London: Taylor and Francis Group. pp: 167–181

  • Leiva D, Clavero-León C, Carú M, Orlando J (2016) Intrinsic factors of Peltigera lichens influence the structure of the associated soil bacterial microbiota. FEMS Microbiol Ecol 92(11):fiw18

    Article  Google Scholar 

  • Lester C, Moller N, Hammerum A (2004) Conjugal Transfer of Aminoglycoside and Macrolide Resistance between Enterococcus faecium Isolates in The Intestine of Streptomycin-Treated Mice. Feems Microbiol Lett 235:385–391

    Article  CAS  Google Scholar 

  • Lester Y, Sabach S, Zivan O, Dubowski Y (2017) Key environmental processes affecting the fate of the insecticide chloropyrifos applied to leaves. Chemosphere 171:74–80. https://doi.org/10.1016/j.chemosphere.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Krüger H, Zetzsch C (2005) Degradation study of the aerosol-borne insecticides Dicofol and DDT in an aerosol smog chamber facility by OH radical in relation to the POPs convention. Proc Eur Geosci Union Vienna Austria 7:05760

    Google Scholar 

  • Mattei C, Wortham H, Quivet E (2018) Heterogeneous atmospheric degradation of pesticides by ozone: Influence of relative humidity and particle type. Sci Total Environ 625:1544–1553. https://doi.org/10.1016/j.scitotenv.2018.01.049

    Article  CAS  PubMed  Google Scholar 

  • Mattina MI, Isleyen M, Eitzer BD, Iannucci-Berger W, White JC (2006) Uptake by Cucurbitaceae of soil-borne contaminants depends upon plant genotype and pollutant properties. Environ Sci Technol 40(6):1814–1821

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin Syhthesis and Response of Antioxidants During Cadmium Stres in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (2000) Homeostasis of adenylate status during photosynthesis in a fluctuating environment. J Exp Bot 51:347–356

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53(372):1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer C (2012) Glutathione in plants: An integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira LL, Macedo AF (2015) The effect of light quality, temperature and substrate on seed germination and epicotyl development of Carapa guianensis, a multi-use neotropical tree. J Med Plants Res 9(18):582–593

    Article  Google Scholar 

  • Parrish ZD, White JC, Isleyen M, Gent MPN, Iannucci-Berger W, Eitzer BD, Kelsey JW, Mattina MI (2006) Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere 64(4):609–618

    Article  CAS  PubMed  Google Scholar 

  • Peres MTLP, Mapeli AM, Faccenda O, Gomes AT, Honda NK (2009) Allelopathic potential of orsellinic acid derivatives. Braz Arch Biol Technol. https://doi.org/10.1590/S1516-89132009000400027

    Article  Google Scholar 

  • Piervittori R, Favero-Longo SE, Gazzano C (2009) Lichens and biodeterioration of stonework: a review. Chem Today 27(6):8–10

    CAS  Google Scholar 

  • Pirintsos SA, Matsi T, Vokou D, Gaggi C, Loppi S (2006) Vertical distribution patterns of trace elements in an Urban environment as reflected by their accumulation in lichen transplants. J Atmos Chem 54:121–131

    Article  CAS  Google Scholar 

  • Potter TI, Rood SB, Zanewich KP (1999) Light intensity, gibberellin content and the resolution of shoot growth in Brassica. Planta 207(4):505–511. https://doi.org/10.1007/s004250050510

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Kondo R (2011) Basic studies and applications on bioremediation of DDT: a review. Int Biodeter Biodegrad 65(7):921–930

    Article  CAS  Google Scholar 

  • Ruttens A, Colpaert JV, Mench M, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environ Pollut 144:533–539

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Shanker Dubey R, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, review article. J Botany Article ID 217037, 26 pages

  • Smirnoff N (2005) Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd

  • Stevens CJ, Smart SM, Henrys PA, Maskell LC, Crowe A, Simkin J, Cheffings CM, Whitfield C, Gowing DJG, Rowe EC, Dore AJ, Emmett BA (2012) Terricolous lichens as indicators of nitrogen deposition: evidence from national records. Ecol Ind 20:196–203

    Article  CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Szalai G, Kellős T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Tiansawat P, Dalling JW (2013) Differential seed germination responses to the ratio of red to far-red light in temperate and tropical species. Plant Ecol 214:751–764

    Article  Google Scholar 

  • Valencia-Islas N, Zambrano A, Rojas JL (2007) Ozone reactivity and free radical scavenging behavior of phenolic secondary metabolites in lichens exposed to chronic oxidant air pollution from Mexico City. J Chem Ecol 33:1619–1634

    Article  CAS  PubMed  Google Scholar 

  • Wang XP, White JC, Gent MPN, Iannucci-Berger W, Eitzer BD, Mattina MJI (2004) Phytoextraction of weathered p(,)p’-DDE by zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under different cultivation conditions. Int J Phytoremed 6(4):363–385

    Article  CAS  Google Scholar 

  • White JC (2000) Phytoremediation of Weathered p, p’-DDE Residues in Soil. Int J Phytoremed 2(2):133–144

    Article  CAS  Google Scholar 

  • White JC (2001) Plant-facilitated mobilization and translocation of weathered 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p, p’-DDE) from an agricultural soil. Environ Toxicol Chem 20(9):2047–2052

    CAS  PubMed  Google Scholar 

  • White JC (2002) Differential bioavailability of field-weathered p, p’-DDE to plants of the Cucurbita and Cucumis genera. Chemosphere 49(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • White JC (2009) Optimizing planting density for p, p’-DDE phytoextraction by Cucurbita pepo. Environ Eng Sci 26(2):369–375

    Article  CAS  Google Scholar 

  • White JC, Wang XP, Gent MPN, Iannucci-Berger W, Eitzer BD, Schultes NP, Arienzo M, Mattina MI (2003) Subspecies-level variation in the phytoextraction of weathered p, p '-DDE by Cucurbita pepo. Environ Sci Technol 37(19):4368–4373

    Article  CAS  PubMed  Google Scholar 

  • White JC, Parrish ZD, Isleyen M, Gent MPN, Iannucci-Berger W, Eitzer BD, Mattina MJI (2005) Uptake of weathered p, p’-DDE by plant species effective at accumulating soil elements. Microchem J 81(1):148–155

    Article  CAS  Google Scholar 

  • White JC, Parrish ZD, Isleyen M, Gent MPN, Iannucci-Berger W, Eitzer BD, Kelsey JW, Mattina MI (2006a) Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species. Int J Phytoremed 8(1):63–79

    Article  CAS  Google Scholar 

  • White JC, Parrish ZD, Gent MPN, Iannucci-Berger W, Eitzer BD, Isleyen M, Mattina MI (2006b) Soil amendments, plant age, and intercropping impact p, p’-DDE bioavailability to Cucurbita pepo. J Environ Qual 35(4):992–1000

    Article  CAS  PubMed  Google Scholar 

  • White JC, Peters R, Kelsey JW (2007) Surfactants differentially impact p, p’-DDE accumulation by plant and earthworm species. Environ Sci Technol 41(8):2922–2929

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18(4):339–353

    Article  CAS  PubMed  Google Scholar 

  • Zhang JF, Liub H, Sun YY, Wang XR, Wu JC, Xue YQ (2005) Responses of the antioxidant defenses of the Goldfish Carassius auratus, exposed to 2,4-dichlorophenol. Environ Toxicol Pharmacol 19:185–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is a part of scientific project funded by the Scientific and Technological Research Council of Turkey (TUBITAK), Grant No: 117Y363.

Funding

It was funded by the Scientific and Technological Research Council of Turkey (TUBITAK), Grant No: 117Y363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysegul Akpinar.

Ethics declarations

Competing interests

The authors declare that there are no competing interests.

Additional information

Communicated by P. Wojtaszek.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akpinar, A., Cansev, A. & Isleyen, M. Impact of Peltigera praetextata on zucchini grown in weathered p,p'-DDE-contaminated soil and its responses. Acta Physiol Plant 44, 140 (2022). https://doi.org/10.1007/s11738-022-03474-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-022-03474-8

Keywords

Navigation