Skip to main content
Log in

Photosynthetic activity and OJIP fluorescence with the application of a nutritional solution

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effects of macronutrients (Mg and P), and micronutrients (Mn, Cu, and Fe) application on the physiological performance of the photosynthetic apparatus were examined using the A/Ci curve and transient OJIP fluorescence methods. It was also evaluated the impact on the production, and dry matter of roots. The nutrients studied are responsible for several physiological mechanisms, such as the activation of enzymes, the constitution of chlorophyll, formation of ATP, DNA, and RNA, among others. Transient fluorescence parameters provide quick information on a wide range of photosynthetic component processes and can assist in understanding photosynthetic performance. For this purpose, a study was carried out with four concentrations of a nutrient solution (Mg, P, Mn, Cu, and Fe), and two application times, vegetation/reproduction and only reproduction stage. The nutrient solution application influenced positively the photosynthetic performance indexes, production, and root biomass. The increase in most photosynthetic indicators or reaction centers of different fluxes was positively impacted by different concentrations and at different times of application. The performance index on an absorption basis, PIABS, and quantum efficiency (φEo) were the most sensitive parameters to applications. Thus, the OJIP methods parameters that incorporate electron transport in addition to the PSII, can indicate useful parameters for determining the physiological performance of a nutritional solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Balemi T, Negisho L (2012) Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J Soil Sci Plant Nutr 12:547–562

    Article  Google Scholar 

  • Bilguer W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432

    Article  Google Scholar 

  • Bukhov NG, Sabat SC, Mohanty P (1990) Analysis of chlorophyll a fluorescence changes in weak light in heat treated Amaranthus chloroplasts. Photosynth Res 23:81–87. https://doi.org/10.1007/BF00030066

    Article  CAS  PubMed  Google Scholar 

  • Carstensen A, Herdean A, Schmidt SB, Sharma A, Spetea C, Pribil M, Husted S (2018) The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol 177:271. https://doi.org/10.1104/pp.17.01624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceppi MG, Oukarroum A, Çiçek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress, and salt stress. Physiol Plant 144:277–288. https://doi.org/10.1111/j.1399-3054.2011.01549.x

    Article  CAS  PubMed  Google Scholar 

  • Cuchiara CC, Silva IMC, Martinazzo EG, Braga EJB, Bacarin MA, Peters JÁ (2013) Chlorophyll fluorescence transient analysis in Alternanthera tenella Colla plants grown in nutrient solution with different concentrations of copper. J Agric Sci 5(8):2013

  • FAO, World Reference Base for Soil Resources (2015) International soil classification system for naming soils and creating legends for soil maps. ISSN 0532–0488

  • Farhat N, Elkhouni A, Zorrig W, Smaoui A, Abdelly C, Rabhi M (2016) Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol Plant 138:145. https://doi.org/10.1007/s11738-016-2165-z

    Article  CAS  Google Scholar 

  • Gao S, Yan R, Cao M, Yang W, Wang S, Chen F (2008) Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant Soil Env 54(3):117–122

    Article  CAS  Google Scholar 

  • Ghasemian V, Ghalavand A, Zadeh AS, Pirzad A (2010) The effect of iron, zinc, and manganese on quality and quantity of soybean seed. J Phytol 2(11):73–79

    Google Scholar 

  • Hernández I, Munné-Bosch S (2015) Linking phosphorus availability with photo-oxidative stress in plants. J Exp Bot 66(10):2889–2900. https://doi.org/10.1093/jxb/erv056

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo D, Corona F, Martín-Marroquín JM (2020) Nutrient recycling: from waste to crop. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00590-3

    Article  Google Scholar 

  • Iqbal MN, Rizwan Rasheed R, Ashraf MY, Ashraf MA, Hussain I (2018) Exogenously applied zinc and copper mitigate salinity effect in maize (Zea mays L.) by improving key physiological and biochemical attributes. Environ Sci Pollut Res 25:23883–23896. https://doi.org/10.1007/s11356-018-2383-6

    Article  CAS  Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska I, Cetner MD, Goltsev V, Ladle RJ, Dabrowski P, Ahmad P (2014) The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants. Emerg Technol Manag Crop Stress Tolerance 2:347–385. https://doi.org/10.1016/B978-0-12-800875-1.00015-6

    Article  Google Scholar 

  • Kotakis C, Kyeridou A, Manetas Y (2014) Photosynthetic electron flow during leaf senescence: evidence for preferential maintenance of photosystem I activity and increased cyclic electron flow. Photosynthetica 52:413–420. https://doi.org/10.1007/s11099-014-0046-5

    Article  CAS  Google Scholar 

  • Li H, Yang Y, Zhang H, Chu S, Zhang X, Yin D, Yu D, Zhang D (2016) A genetic relationship between phosphorus efficiency and photosynthetic traits in soybean as revealed by QTL analysis using a high-density genetic map. Front Plant Sci 7:1–16. https://doi.org/10.3389/fpls.2016.00924

    Article  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54(392):2393–2401. https://doi.org/10.1093/jxb/erg262

    Article  CAS  PubMed  Google Scholar 

  • Malavolta E (2006) Mineral plant nutrition manual. São Paulo. Agronomica Ceres

  • Milalleo R, Reyes- Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as an essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10(4):470–481. https://doi.org/10.4067/S0718-95162010000200008

    Article  Google Scholar 

  • Mousavi SR, Shahsavari M, Rezaei M (2011) General overview on manganese (Mn) importance for crops production. Aust J Basic Appl Sci 5(9):1799–1803

    Google Scholar 

  • Osman AR (2013) Genetic variability and total phenolic compounds among six Coleus blumei varieties using RAPD Analysis. J Appl Sci Res 9:1395–1400

    CAS  Google Scholar 

  • Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiol 156:1006–1015. https://doi.org/10.1104/pp.111.175281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raij BV, Andrade JC, Cantarella H, Quaggio JA (2001) Chemical analysis to assess fertility in tropical soils. In: Campinas. Instituto Agronômico

  • Ravet K, Pilon M (2013) Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxidant Redox Signal 19(9):919–932. https://doi.org/10.1089/ars.2012.5084

    Article  CAS  Google Scholar 

  • Riaz M, Kamran M, Fang Y, Yang G, Rizwan M, Ali S, Zhou Y, Wang Q, Deng L, Wang Y, Wang X (2021) Boron supply alleviates cadmium toxicity in rice (Oryza sativa L.) by enhancing cadmium adsorption on cell wall and triggering antioxidant defense system in roots. Chemosphere 266:128938. https://doi.org/10.1016/j.chemosphere.2020.128938

    Article  CAS  PubMed  Google Scholar 

  • Rochaix JD (2011) Assembly of the photosynthetic apparatus. Plant Physiol 155(4):1493–1500. https://doi.org/10.1104/pp.110.169839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roosta HR, Estaji A, Niknam F (2018) Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica 56(2):606–615. https://doi.org/10.1007/s11099-017-0696-1

    Article  CAS  Google Scholar 

  • Salvatori E, Fusaro L, Gottardini E, Pollastrini M, Goltsev V, Strasser RJ, Bussotti F (2014) Plant stress analysis: application of prompt, delayed chlorophyll fluorescence and 820 nm modulated reflectance. Insights from independent experiments. Plant Physiol Biochem 85:105–113. https://doi.org/10.1016/j.plaphy.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  • Santos EF, Santini JMK, Paixão AP, Furlani Junior E, José L, Campos M, Reis AR (2017) Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol Biochem 113:6–9. https://doi.org/10.1016/j.plaphy.2017.01.022

    Article  CAS  PubMed  Google Scholar 

  • Schmidt BS, Jensen PE, Husted S (2016) Manganese deficiency in plants: the impact on photosystem II. Trends Plant Sci 21(7):622–632. https://doi.org/10.1016/j.tplants.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD (1985) O2-insensitive photosynthesis in C3 plants. Its occurrence and a possible explanation. Plant Physiol 78:71–75

    Article  CAS  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves forC3 leaves. Plant Cell Environ 30:1035–1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x

    Article  CAS  PubMed  Google Scholar 

  • Smethurst CF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270(1):31–45

    Article  CAS  Google Scholar 

  • Solymosi K, Bertrand M (2012) Soil metals, chloroplasts, and secure crop production: a review. Agron Sustain Dev 32:245–272. https://doi.org/10.1007/s13593-011-0019-z

    Article  CAS  Google Scholar 

  • Stirbet A, Govindjee S (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol, B 104:236–257. https://doi.org/10.1016/j.jphotobiol.2010.12.010

    Article  CAS  Google Scholar 

  • Stirbet A, Govindjee S (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res 113:15–61. https://doi.org/10.1007/s11120-012-9754-5

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Lazár D, Kromdijk J, Govindjee G (2018) Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56:86–104. https://doi.org/10.1007/s11099-018-0770-3

    Article  CAS  Google Scholar 

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Mathis P (ed) Photosynthesis: from light to biosphere, pp 977–980. https://doi.org/10.1007/978-94-009-0173-5_1142.

  • Strasser RJ, Tsimilli-Michael M (2001) Stress in plants, from daily rhythm to global changes, detected and quantified by the JIP-Test. Chim Nouvelle (SRC) 75:3321–3326

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration series, pp 321–362

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochem Biophys Acta Bioenerget 1797:1313–1326

    Article  CAS  Google Scholar 

  • Strauss AJ, Krügera GHJ, Strasserb RJ, VanHeerden PDR (2006) Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environ Exp Bot 56(2):147–157. https://doi.org/10.1016/j.envexpbot.2005.01.011

    Article  CAS  Google Scholar 

  • Tanoi K, Kobayashi NI (2015) Leaf senescence by magnesium deficiency. Plants (basel, Switzerl) 4(4):756–772

    CAS  Google Scholar 

  • Tewari RK, Yadav N, Gupta R, Kumar P (2021) Oxidative stress under macronutrient deficiency in plants. J Soil Sci Plant Nutr 21:832–859. https://doi.org/10.1007/s42729-020-00405-9

    Article  CAS  Google Scholar 

  • Touchette BW, Adams EC, Laimbeer P (2012) Age-specific responses to elevated salinity in the coastal marsh plant black needle rush (Juncus roemerianus Scheele) as determined through polyphasic chlorophyll a fluorescence transients (OJIP). Mar Biol 159:2137–2147

    Article  CAS  Google Scholar 

  • Tränkner M, Tavakol E, Jákli B (2018) Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol Plant 163:414–431. https://doi.org/10.1111/ppl.12747

    Article  CAS  Google Scholar 

  • Tsimilli-Michael M, Strasser, R (2008) In vivo assessment of stress impact on plants' vitality: applications in detecting and evaluating the beneficial role of Mycorrhization on host plants. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco function, biotechnology, eco-physiology, structure, and systematic. Uttar Pradesh: Springer, pp 679–703

  • Wang N, Qiu W, Dai J, Guo X, Lu Q, Wang T, Li S, Liu T, Zuo Y (2019) AhNRAMP1 enhances manganese and zinc uptake in plants. Front Plant Sci 10:415. https://doi.org/10.3389/fpls.2019.00415

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang DB, Peng LX, Zhao JL, Zou L, Zhao G, Song C (2013) Effect of drought stress on yield, chlorophyll contents and photosynthesis in Tartary buckwheat (Fagopyrum tataricum). J Food Agric Environ 11(3–4):1358–1363

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Lima-Moro.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by C. Leonardo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima-Moro, A., Bertoli, S.C., Braga-Reis, I. et al. Photosynthetic activity and OJIP fluorescence with the application of a nutritional solution. Acta Physiol Plant 44, 67 (2022). https://doi.org/10.1007/s11738-022-03402-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-022-03402-w

Keywords

Navigation