Skip to main content
Log in

Protective effect of Pseudomonas spp. isolates and zinc on seed germination and β-amylase activity in wheat cultivars under cadmium stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Plant–bacteria interactions and plant nutrition have been exploited to abate the harmful effects of cadmium (Cd) on the germination of wheat cultivars. This study investigated the effects of Pseudomonas species and zinc (Zn) on the germination of wheat cultivars Triticum aestivum (bread wheat) and Triticum turgidum (durum wheat) under Cd stress. The application of bacteria (Pseudomonas putida inoculants, Pseudomonas fluorescens inoculants), Zn in three levels (0, 15 and 30 mg L−1), Cd in five levels (0, 5, 15, 25 and 35 mg L−1) and appropriate negative controls was evaluated in each wheat cultivar. β-Amylase activity was reduced with increasing Cd concentration. Durum wheat showed higher β-amylase enzyme activity than bread wheat after inoculation with P. fluorescens. Nevertheless, inoculated seeds of both wheat cultivars with P. fluorescens exhibited increased β-amylase activity and consequently increased germination speed. However, bacterial inoculation showed no effect on the increment of plumule and radicle dry weights of seedlings. Overall, the combined application of Pseudomonas species (especially P. fluorescens) and Zn was able to decrease the deleterious effects of Cd stress on β-amylase activity, and subsequently germination indices of wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad W, Watts MJ, Imtiaz M, Ahmed I, Zia MH (2012) Zinc deficiency in soils, crops and humans: a review. Agrochimica-Pisa 56:65–97

    CAS  Google Scholar 

  • Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. CR Biol 330:735–746

    Article  CAS  Google Scholar 

  • Asadi Rahmani H, Asgharzadeh A, Khavazi K, Arzanesh MH (2010) Imroving wheat yield using plant growth promoting rhizobacteria (PGPR). agris.fao.org

  • Asgharzadeh A, Ghaderi J, Keshavarz P, Haghighatnia H (2011) Application of PGPR producing plant growth hormones to increase wheat yield. agris.fao.org

  • Bansal P, Sharma P, Goyal V (2002) Impact of lead and cadmium on enzyme of citric acid cycle in germinating pea seeds. Biol Plant 45:125–127

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases α and β. Methods Enzymol 1:149–158. https://doi.org/10.1016/0076-6879(55)01021-5

    Article  CAS  Google Scholar 

  • Bilderback DE (1973) A simple method to differentiate between α- and β-amylase. Plant Physiol 51:594–595

    Article  CAS  Google Scholar 

  • Chellaiah ER (2018) Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl Water Sci 8:1–10

    Article  CAS  Google Scholar 

  • Cheng Y, Zhou QX (2002) Ecological toxicity of reactive X-3B red dye and cadmium acting on wheat (Triticum aestivum). J Environ Sci (China) 14:136–140

    CAS  Google Scholar 

  • Chugh LK, Sawhney SK (1996) Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environ Pollut 92:1–5

    Article  CAS  Google Scholar 

  • De Maria S, Puschenreiter M, Rivelli AR (2013) Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant Soil Environ 59:254–261

    Article  Google Scholar 

  • Gratão PL, Vara Prasad MN, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Braz J Plant Physiol 17:53–64

    Article  Google Scholar 

  • He JY, Ren YF, Cheng Z, Jiang D (2008) Effects of cadmium stress on seed germination, seedling growth and seed amylase activities in rice (Oryza sativa). Rice Sci 15:319–325

    Article  Google Scholar 

  • ISTA (1999) International rules for seed testing vol 21. https://www.seedtest.org/en/international-rules-_content---1--1083.html

  • Javadi Nobandegani MB, Saud HM, Yun WM (2015) Phylogenetic relationship of phosphate solubilizing bacteria according to 16S rRNA genes. BioMed Res Int 2015:1–5. https://doi.org/10.1155/2015/201379

    Article  CAS  Google Scholar 

  • Johncy-Rani M, Hemambika B, Hemapriya J, Rajeshkannan V (2010) Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach. Glob J Environ Res 4:23–30

    CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants, vol 315. CRC Press, Boca Raton

    Google Scholar 

  • Köleli N, Eker S, Cakmak I (2004) Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environ Pollut 131:453–459

    Article  Google Scholar 

  • Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105

    Article  CAS  Google Scholar 

  • Liu X, Zhang S, Shan XQ, Christie P (2007) Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination. Ecotoxicol Environ Saf 68:305–313. https://doi.org/10.1016/j.ecoenv.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  Google Scholar 

  • Mihoub A, Chaoui A, El Ferjani E (2005) Changements biochimiques induits par le cadmium et le cuivre au cours de la germination des graines de petit pois (Pisum sativum L.). CR Biol 328:33–41

    Article  CAS  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  Google Scholar 

  • Rajjak Shaikh I, Rajjak Shaikh P, Ahmed Shaikh R, Abdulla Shaikh A (2013) Phytotoxic effects of heavy metals (Cr, Cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded, India. Res J Chem Sci 3:14–23

    Google Scholar 

  • Safari M, Sorooshzadeh A, Asgharzadeh A, Saadat S (2013) The application of adsorption modeling and fourier transform infrared spectroscopy to the comparison of two species of plant growth-promoting rhizobacteria as biosorbents of cadmium in different pH solutions. Biorem J 17:201–211

    Article  CAS  Google Scholar 

  • Sarowar Jahan MG, Shaela Pervin M, Shariar Shovon M, Dev Sharma SC, Roy N, Habibur Rahman M (2012) Effect of metal ions, chelating agent and SH-reagents on radish (Raphanus sativus L.) root β-amylase. J Stress Physiol Biochem 8:180–188

    Google Scholar 

  • Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sc Biol Med 4:272–275. https://doi.org/10.4103/0976-9668.116964

    Article  CAS  Google Scholar 

  • Song Y, Jinc L, Wang M (2017) Cadmium absorption and transportation pathways in plants. Int J Phytorem 19:133–141

    Article  CAS  Google Scholar 

  • Souza VL, de Almeida AA, Lima SG, de Cascardo JC, da Silva D, Mangabeira PA, Gomes FP (2011) Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae). Biometals 24:59–71. https://doi.org/10.1007/s10534-010-9374-5

    Article  CAS  PubMed  Google Scholar 

  • Tran TA, Popova LP (2013) Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Botany 37:1–13

    CAS  Google Scholar 

  • Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  Google Scholar 

  • Wu JW, Shi Y, Zhu YX, Wang YC, Gong HJ (2013) Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23:815–825

    Article  CAS  Google Scholar 

  • Yamasaki Y (2003) β-Amylase in germinating millet seeds. Phytochemistry 64:935–939

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Tarbiat Modares University for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Kari Dolatabad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. Wojtaszek.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, M., Kari Dolatabad, H., Ndu, U. et al. Protective effect of Pseudomonas spp. isolates and zinc on seed germination and β-amylase activity in wheat cultivars under cadmium stress. Acta Physiol Plant 42, 50 (2020). https://doi.org/10.1007/s11738-020-03038-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03038-8

Keywords

Navigation