Skip to main content

Advertisement

Log in

Environmental factors that limit Stipa tenacissima L. germination and establishment in Mediterranean arid ecosystems in a climate variability context

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In a climate variability context, knowledge about Alpha grass (Stipa tenacissima) seed germination and seedling establishment requirements is a key factor given the relevance of this species in wide areas of North Africa and southern Europe. Such knowledge can help to collect information about current S. tenacissima populations allowing the conservation and restoration in these ecosystems. According to this objective, we conducted a series of laboratory studies to investigate the effects of several ecological factors as temperature, light, salinity, burial depth and drought, in relation to germination capacity and development of new seedlings. The main results revealed that germination was delayed with increasing drought conditions generated by osmotic solutions. Seeds germinated at all the concentrations of NaCl solutions, but germination was completely inhibited at a PEG 6000 solution of −1.6 MPa. Further, an osmotic potential of −0.8 MPa inhibited root and shoot growth. Variations in temperature also promoted variable germination rates (GR50). The base germination temperature (Tb (50)) was less than 2 °C for the different osmotic potentials. Burial depth was another limiting factor required for establishment. Despite significant seed production, this study has identified several key limiting points affecting seed germination and seedling establishment which can affect the viability of their populations in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ait Belaid M (1994) Les systèmes d’information pour l’environnement : Développement et formation. Géo observateur 5:61–69

    Google Scholar 

  • Allen P (2003) When and how many? Hydrothermal models and the prediction of seed germination. New Phytol 158:1–3. doi:10.1046/J.1469-8137.2003.00729.X

    Article  Google Scholar 

  • Allen PS, Meyer SE, Khan MA (2000) Hydrothermal time as a tool in comparative germination studies. In: Black M, Bradford KJ, Vázquez-Ramos J (eds) Seed biology: advances and applications. Proc. 6th International workshop on seeds, Mérida, México, pp 401–410

  • Alvarado V, Bradford KJ (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell Environ 25:1061–1069. doi:10.1046/J.1365-3040.2002.00894.X

    Article  Google Scholar 

  • Atak M, Kaya MD, Kaya G, Çıkılı Y, Çiftçi CY (2006) Effects of NaCl on the germination, seedling growth and water uptake of triticale. Turk J Agric For 30:39–47

    CAS  Google Scholar 

  • Bair NB, Meyer SE, Allen PS (2006) A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. Seed Sci Res 16:17–28. doi:10.1079/SSR2005237

    Article  Google Scholar 

  • Barberá GG, Navarro-Cano JA, Castillo VM (2006) Seedling recruitment in a semi-arid steppe: the role of microsite and post-dispersal seed predation. J Arid Environ 67:701–714. doi:10.1016/J.JARIDENV.2006.03.019

    Article  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, p 666

    Google Scholar 

  • Benchenafi-Lachachi S, Benabadji N, Benmansour D (2013) Contribution to the study of Lygeum spartum L. germinative properties in the south region of Tlemcen (Western Algeria). Environ Res J 7:20–24. doi:10.3923/ERJ.2013.20.24

    Google Scholar 

  • Benech-Arnold RL, Sanchez RA, Forcella F, Kruk BC, Ghersa CM (2000) Environmental control of dormancy in weed seed banks in soil. Field Crops Res 67:105–122

    Article  Google Scholar 

  • Bonvissuto GL, Busso CA (2007) Germination of grasses and shrubs under various water stress and temperature conditions. Phyton, Int J Exp Bot 76:119–131

    Google Scholar 

  • Bossuyt B, Honnay O (2008) Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J Veg Sci 19:875–884. doi:10.3170/2008-8-18462

    Article  Google Scholar 

  • Boussaid M, Benito C, Harche MK, Naranjo T, Zedek M (2010) Genetic variation in natural populations of Stipa tenacissima from Algeria. Biochem Genet 48:857–872. doi:10.1007/S10528-010-9367-7

    Article  CAS  PubMed  Google Scholar 

  • Bradford KJ (1990) A water relations analysis of seed germination rates. Plant Physiol 94:840–849. doi:10.1104/PP.94.2.840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford KJ (1995) Water relations in seed germination. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker Inc, New York, pp 351–396

    Google Scholar 

  • Bradford KJ (2002) Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50:248–260

    Article  CAS  Google Scholar 

  • Cervera JC, Andrade JL, Simá JL, Graham EA (2006) Microhabitats, germination and establishment for Mammillaria gaumeri (Cactacea), a rare species from Yucatan. Int J Plant Sci 167:311–319

    Article  Google Scholar 

  • Cheng Z, Bradford KJ (1999) Hydrothermal time analysis of tomato seed germination responses to priming treatments. J Exp Bot 50:89–99. doi:10.1093/JXB/50.330.89

    Article  CAS  Google Scholar 

  • Dahal P, Bradford KJ (1994) Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Sci Res 4:71–80. doi:10.1017/S096025850000204X

    Article  Google Scholar 

  • Deines L, Rosentreter R, Eldridge DJ, Serpe MD (2007) Germination and seedling establishment of two annual grasses on lichen-dominated biological soil crusts. Plant Soil 295:23–35. doi:10.1007/S11104-007-9256-Y

    Article  CAS  Google Scholar 

  • Derbel S, Chaieb M (2007) Germination behaviour and seedling establishment of two desert shrubs, Calligonum polygonoides (Polygonaceae) and Spartidium saharae (Fabaceae), under experimental conditions. Acta Bot Gall 154:533–544. doi:10.1080/12538078.2007.10516079

    Article  Google Scholar 

  • Dhief A, Aschi-Smiti S, Neffati M (2014) Germination behavior of some wild species from Tunisia desert under temperature. Herald J Agric Food Sci Res 3:20–43

    Google Scholar 

  • Donohue K, Pyle EH, Messiqua D, Heschel MS, Schmitt J (2001) Adaptive divergence in plasticity in natural populations of Impatiens capensis and its consequences for performance in novel habitats. Evolution 55:692–702

    Article  CAS  PubMed  Google Scholar 

  • Durán Zuazo VH, Rodríguez Pleguezuelo CR (2008) Soil-erosion and runoff prevention by plant covers: a review. Agron Sustain Dev 28:65–86. doi:10.1007/978-90-481-2666-8_48

    Article  Google Scholar 

  • Emberger L (1954) Une classification biologique des climats. Recueil des travaux du Laboratoire de Botanique. Serie Botanique 7:3–43

    Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319. doi:10.1093/JXB/ERH003

    Article  CAS  PubMed  Google Scholar 

  • Galmés J, Medrano H, Flexas J (2006) Germination capacity and temperature dependence in Mediterranean species of the Balearic Islands. Investigación Agraria, Sistemas y Recursos Forestales 15:88–95

    Article  Google Scholar 

  • García-Fayos P, Gasque M (2006) Seed vs. microsite limitation for seedling emergence in the perennial grass Stipa tenacissima L. (Poaceae). Acta Oecol 30:276–282. doi:10.1016/J.ACTAO.2006.05.003

    Article  Google Scholar 

  • Gasque M, García-fayos P (2003) Seed dormancy and longevity in Stipa tenacissima L. (Poaceae). Plant Ecol 168:279–290

    Article  Google Scholar 

  • Ghiloufi W, Quéro Pérez JL, García-Gómez M, Chaieb M (2015) Assessment of species diversity and state of Stipa tenacissima steppes. Turk J Bot 39:227–237. doi:10.3906/BOT-1404-57

    Article  Google Scholar 

  • Graziani A, Steinmaus SJ (2009) Hydrothermal and thermal time models for the invasive grass, Arundo donax. Aquat Bot 90:78–84. doi:10.1016/J.AQUABOT.2008.06.003

    Article  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190. doi:10.1146/ANNUREV.PP.31.060180.001053

    Article  CAS  Google Scholar 

  • Grundy AC, Phelps K, Reader RJ, Burston S (2000) Modeling the germination of Stellaria media using the concept of hydrothermal time. New Phytol 148:433–444. doi:10.1046/J.1469-8137.2000.00778.X

    Article  Google Scholar 

  • Gulías J, Traveset A, Riera N, Mus M (2004) Critical stages in the recruitment process of Rhamnus alaternus L. Ann Bot 93:723–731. doi:10.1093/AOB/MCH100

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurusinghe SH, Cheng Z, Bradford KJ (1999) Cell cycle activity during seed priming is not essential for germination advancement in tomato. J Exp Bot 50:101–106. doi:10.1093/JXB/50.330.101

    Article  CAS  Google Scholar 

  • Haase P, Pugnaire FI, Incoll LD (1995) Seed production and dispersal in the semi-arid tussock grass Stipa tenacissima L. during masting. J Arid Environ 31:55–65

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press Inc., London, UK. p 892

  • Hou JQ, Romo JT (1998) Seed weight and germination time affect growth of two shrubs. J Range Manage 51:699–703

    Article  Google Scholar 

  • Hu XW, Zhou ZQ, Li TS, Wu YP, Wang YR (2013) Environmental factors controlling seed germination and seedling recruitment of Stipa bungeana on the Loess Plateau of northwestern China. Ecol Res 28:801–809. doi:10.1007/S11284-013-1063-8

    Article  Google Scholar 

  • Iacona GD, Kirkman LK, Bruna EM (2012) Experimental test for facilitation of seedling recruitment by the dominant bunchgrass in a fire-maintained savanna. PLoS ONE 7:e39108. doi:10.1371/JOURNAL.PONE.0039108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of working groups I, II, III to the fourth assessment report of the intergovernmental panel on climate change [Core Writing Team, Pachauri RK and Reisinger A (eds.)]. Geneva, Switzerland, p 104

  • IPCC (2014) Climate Change, 2014. Synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, Pachauri RK and Meyer LA (eds.)]. Geneva, Switzerland, p 151

  • Jeddi K, Cortina J, Chaieb M (2009) Acacia salicina, Pinus halepensis and Eucalyptus occidentalis improve soil surface conditions in arid southern Tunisia. J Arid Environ 73:1005–1013. doi:10.1016/J.JARIDENV.2009.05.005

    Article  Google Scholar 

  • Kemp PR (1989) Seed banks and vegetation processes in deserts. In: Leck MA, Parker VT, Simpson RL (eds) Ecology of soil seed banks. Academic Press Inc, San Diego, pp 257–281

    Chapter  Google Scholar 

  • Khurana E, Singh JS (2001) Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environ Conserv 28:39–52. doi:10.1017/S0376892901000042

    Article  Google Scholar 

  • Krichen K, Ben Mariem H, Chaieb M (2014) Ecophysiological requirements on seed germination of a Mediterranean perennial grass (Stipa tenacissima L.) under controlled temperatures and water stress. South Afr J Bot 94:210–217. doi:10.1016/J.SAJB.2014.07.008

    Article  Google Scholar 

  • Le Houérou HN (1995) The Sahara from the bioclimatic viewpoint: definitions and limits. Ann Arid Zone 34:1–16

    Google Scholar 

  • Le Houérou HN (2001) Biogeography of the arid steppe land north of the Sahara. J Arid Environ 48:103–128

    Article  Google Scholar 

  • Luzuriaga AL, Escudero A, Pérez-Garcia F (2006) Environmental maternal effects on seed morphology and germination in Sinapsis arvensis (Cruciferae). Weed Res 46:163–174

    Article  Google Scholar 

  • Meyer SE, Debaene-Gill SB, Allen PS (2000) Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss, and priming effects in Elymus elymoides. Seed Sci Res 10:213–223. doi:10.1017/S0960258500000246

    Article  Google Scholar 

  • Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouled Belgacem A, Neffati M, Papanastasis VP, Chaieb M (2006) Effects of seed age and seeding depth on growth of Stipa lagascae R. & Sch. seedlings. J Arid Environ 65:682–687. doi:10.1016/J.JARIDENV.2005.10.001

    Article  Google Scholar 

  • Pugnaire FI, Luque MT, Armas C, Gutiérrez L (2006) Colonization processes in semi-arid Mediterranean old-fields. J Arid Environ 65:591–603. doi:10.1016/J.JARIDENV.2005.10.002

    Article  Google Scholar 

  • Puigdefábregas J, Sánchez G (1996) Geomorphological implications of vegetation patchiness on semi-arid slopes. In: Anderson MG, Brooks SM (eds) Advances on hillslope processes. Wiley, Chichester, pp 1027–1060

    Google Scholar 

  • Qu XX, Huang ZY, Baskin JM, Baskin CC (2008) Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum. Ann Bot 101:293–299. doi:10.1093/AOB/MCM047

    Article  PubMed  Google Scholar 

  • Ramírez-Padilla CA, Valverde T (2005) Germination responses of three congeneric cactus species (Neobuxbaumia) with differing degrees of rarity. J Arid Environ 61:333–343. doi:10.1016/J.JARIDENV.2004.09.006

    Article  Google Scholar 

  • Roberts EH (1988) Temperature and seed germination. In: Long SP, Woodward FI (eds) Plants and temperature. Symposia of the society of experimental biology. Company of Biologists Ltd., Cambridge, pp 109–132

    Google Scholar 

  • Ronnenberg K, Wesche K, Hensen I (2008) Germination ecology of Central Asian Stipa spp: differences among species, seed provenances, and the importance of field studies. Plant Ecol 196:269–280. doi:10.1007/S11258-007-9351-4

    Article  Google Scholar 

  • Russell M (2011) Dormancy and germination pre-treatments in Willamette Valley native plants. Northwest Sci 85:389–402. doi:10.3955/046.085.0222

    Article  Google Scholar 

  • Silveira JAG, Araújo SAM, Lima JPMS, Viégas RA (2009) Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environ Exp Bot 66:1–8. doi:10.1016/J.ENVEXPBOT.2008.12.015

    Article  CAS  Google Scholar 

  • Simão E, Takaki M, Cardoso VJM (2010) Germination response of Hylocereus setaceus (Salm-Dyck ex DC) Ralf Bauer (Cactaceae) seeds to temperature and reduced water potentials. Braz J Biol 70:135–144

    Article  PubMed  Google Scholar 

  • Steadman KJ, Pritchard HW (2003) Germination of Aesculus hippocastanum seeds following cold-induced dormancy loss can be described in relation to a temperature dependent reduction in base temperature (Tb) and thermal time. New Phytol 161:415–425. doi:10.1046/J.1469-8137.2003.00940.X

    Article  Google Scholar 

  • Steinmaus SJ, Prather TS, Holt JS (2000) Estimation of base temperatures for nine weed species. J Exp Bot 51:275–286. doi:10.1093/JEXBOT/51.343.275

    Article  CAS  PubMed  Google Scholar 

  • Sutherst RW, Maywald GF, Yonow T, Stevens PM (1999) CLIMEX. Predicting the effects of climate on plants and animals. In: User Guide, CSIRO Publishing, Melbourne, Australia

  • Thanos CA (2000) Ecophysiology of germination in Pinus halepensis and P. brutia. In: Néeman G, Trabaud L (eds) Ecology, biogeography and management of Pinus halepensis and P. brutia forest in the Mediterranean Basin. Bachuys Publishers, Leiden, Netherlands, pp 37–50

  • Tlig T, Gorai M, Neffati M (2008) Germination responses of Diplotaxis harra to temperature and salinity. Flora, Morphol Dist Funct Ecol Plants 203:421–428. doi:10.1016/J.FLORA.2007.07.002

    Article  Google Scholar 

  • Yang S, Li X, Yang Y, Yin X, Yang Y (2014) Comparing the relationship between seed germination and temperature for Stipa species on the Tibetan Plateau. Botany 92:895–900. doi:10.1139/CJB-2014-0105

    Article  Google Scholar 

  • Zhang H, Irving LJ, Tian Y, Zhou D (2012) Influence of salinity and temperature on seed germination rate and the hydrotime model parameters for the halophyte, Chloris virgata, and the glycophyte, Digitaria sanguinalis. S Afr J Bot 78:203–210. doi:10.1016/J.SAJB.2011.08.008

    Article  Google Scholar 

  • Zhao NX, Gao YB, Wang JL, Ren AZ (2006) Genetic diversity and population differentiation of the dominant species Stipa krylovii in the Inner Mongolia Steppe. Biochem Genet 44:513–526. doi:10.1007/S10528-006-9054-X

    Article  CAS  PubMed  Google Scholar 

  • Zheng FL (2006) Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere 16:420–427. doi:10.1016/S1002-0160(06)60071-4

    Article  Google Scholar 

Download references

Acknowledgements

Ms. K. Krichen thanks the Ministry of Higher Education and Scientific Research in Tunisia. This work was partially funded by Projects CGL-2011-30531-CO2-02 and CGL2015-69773-C2-2-P by the Spanish Government to Dr. A.Vilagrosa, and Prometeo program (Desestres project, Generalitat Valenciana). CEAM is supported by the Generalitat Valenciana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khouloud Krichen.

Additional information

Communicated by M. Horbowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krichen, K., Vilagrosa, A. & Chaieb, M. Environmental factors that limit Stipa tenacissima L. germination and establishment in Mediterranean arid ecosystems in a climate variability context. Acta Physiol Plant 39, 175 (2017). https://doi.org/10.1007/s11738-017-2475-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2475-9

Keywords

Navigation