Skip to main content
Log in

The coupling effects of water deficit and nitrogen supply on photosynthesis, WUE, and stable isotope composition in Picea asperata

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Water stress and nitrogen (N) availability are the two main factors limiting plant growth, and the two constrains can interact in intricate ways. Moreover, atmospheric N depositions are altering the availability of these limiting factors in many terrestrial ecosystems. Here, we studied the combined effects of different soil water availability and N supply on photosynthesis and water-use efficiency (WUE) in Picea asperata seedlings cultured in pots, using gas exchange, and stable carbon and nitrogen isotope composition (δ 13C and δ 15N). Photosynthesis under light saturation (A sat) and stomatal conductance (g s) of P. asperata decreased as the soil moisture gradually diminished. Under severe water-stress condition, N addition decreased the A sat and g s, whereas the positive effects were observed in moderate water-stress and well-watered conditions. The effect of N addition on the intrinsic WUE (WUEi) deduced from gas exchange was associated with soil water availability, whereas long-term WUE evaluated by leaf δ 13C only affected by soil water availability, and it would be elevated with soil moisture gradually diminished. Water deficit would restrict the uptake and further transport of N to the aboveground parts of P. asperata, and then increasing δ 15N. Therefore, δ 15N in plant tissues may reflect changes in N allocation within plants. These results indicate that the effect of N enrichment on photosynthesis in P. asperata is largely, if not entirely, dependent on the severity of water stress, and P. asperata would be more sensitive to increasing N enrichment under low soil water availability than under high soil moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A sat :

Photsynthetic rate under light saturation

C i/C a :

The ratio of intercellular CO2 concentration and ambient CO2 concentration

g s :

Stomatal conductance

WUE:

Water use efficiency

WUEi :

Intrinsic water use efficiency

δ 13C:

Stable carbon isotope composition

δ 15N:

Stable nitrogen isotope composition

References

  • Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389

    Article  Google Scholar 

  • Aranda I, Pardos M, Puertolas J, Jimenez MD, Pardos JA (2007) Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. Tree Physiol 27:671–677

    Article  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyer J (1996) Advances in drought tolerance in plants. Adv Agron 56:187–218

    Article  Google Scholar 

  • Cabrera-Bosquet L, Molero G, Nogues S, Araus JL (2009) Water and nitrogen conditions affect the relationships of δ 13C and δ 18O to gas exchange and growth in durum wheat. J Exp Bot 60:1633–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Jia JB, Li H, Li MC, Luo J, Liang ZS, Liu TX, Liu WG, Peng CH, Luo ZB (2012) Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species. Plant Biol 14:612–620

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Jia JB, Zhang C, Li H, Liu TX, Jiang XN, Polle A, Peng CH, Luo ZB (2014) Anatomical, physiological and transcriptional responses of two contrasting poplar genotypes to drought and re-watering. Physiol Plant 151:480–494

    Article  CAS  PubMed  Google Scholar 

  • Compton JE, Watrud LS, Porteous LA, DeGrood S (2004) Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. For Ecol Manage 196:143–158

    Article  Google Scholar 

  • Comstock JP (2001) Steady-state isotopic fractionation in branched pathways using plant uptake of NO3 as an example. Planta 214:220–234

    Article  CAS  PubMed  Google Scholar 

  • Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann Bot 89:887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DaMatta FM, Loos RA, Silva EA, Loureiro ME, Ducatti C (2002) Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffea canephora Pierre. Trees 16:555–558

    Article  CAS  Google Scholar 

  • Dawson TE, Ward JK, Ehleringer JR (2004) Temporal scaling of physiological responses from gas exchange to tree rings: a gender-specific study of Acer negundo (Boxelder) growing under different conditions. Funct Ecol 18:212–222

    Article  Google Scholar 

  • del Amor FM, Cuadra-Crespo P (2011) Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth, gas exchange, and isotope composition. Plant Growth Regul 63:55–62

    Article  Google Scholar 

  • Dercon G, Clymans E, Diels J, Merckx R, Deckers J (2006) Differential 13C isotopic discrimination in maize at varying water stress and at low to high nitrogen availability. Plant Soil 282:313–326

    Article  CAS  Google Scholar 

  • Dillen SY, Marron N, Koch B, Ceulemans R (2008) Genetic variation of stomatal traits and carbon isotope discrimination in two hybrid poplar families (Populus deltoides ‘S9-2’ × P. nigra ‘Ghoy’ and P. deltoides ‘S9-2’ × P. trichocarpa ‘V24’). Ann Bot 102:399–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Dosskey MG, Boersma L, Linderman RG (1991) Role for the photosynthate demand of ectomycorrhizas in the response of Douglas fir seedlings to drying soil. New Phytol 117:327–334

    Article  Google Scholar 

  • Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol Plant Molec Biol 33:317–345

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Molec Biol 40:503–537

    Article  CAS  Google Scholar 

  • Ferrio JP, Florit A, Vega A, Serrano L, Voltas J (2003) δ 13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia 137:512–518

    Article  CAS  PubMed  Google Scholar 

  • Fichot R, Laurans F, Monclus R, Moreau A, Pilate G, Brignolas F (2009) Xylem anatomy correlates with gas exchange, water-use efficiency and growth performance under contrasting water regimes: evidence from Populus deltoides × Populus nigra hybrids. Tree Physiol 29:1537–1549

    Article  PubMed  Google Scholar 

  • Gauthier PPG, Lamothe M, Mahe A, Molero G, Nogues S, Hodges M, Tcherkez G (2013) Metabolic origin of δ 15N values in nitrogenous compounds from Brassica napus L. leaves. Plant Cell Environ 36:128–137

    Article  CAS  PubMed  Google Scholar 

  • Gough CM, Seiler JR, Maier CA (2004) Short-term effects of fertilization on loblolly pine (Pinus taeda L.) physiology. Plant Cell Environ 27:876–886

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  PubMed  Google Scholar 

  • Handley LL, Daft MJ, Wilson J, Scrimgeour CM, Ingleby K, Sattar MA (1993) Effects of the ectomycorrhizal and VA mycorrhizal fungi Hydnangium carneum and Glomus clarum on the δ 15N and δ 13C values of Eucalyptus globulus and Ricinus communis. Plant Cell Environ 16:375–382

    Article  CAS  Google Scholar 

  • Handley LL, Austin AT, Robinson D, Scrimgeour CM, Raven JA, Heaton THE, Schmidt S, Stewart GR (1999) The 15N natural abundance (δ 15N) of ecosystem samples reflects measures of water availability. Aust J Plant Physiol 26:185–199

    Article  Google Scholar 

  • Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Glob Change Biol 13:2341–2348

    Article  Google Scholar 

  • Hobbie EA, Gregg J, Olszyk DM, Rygiewicz PT, Tingey DT (2002) Effects of climate change on labile and structural carbon in Douglas-fir needles as estimated by 13C and Carea measurements. Glob Change Biol 8:1072–1084

    Article  Google Scholar 

  • Högberg P, Högbom L, Schinkel H, Högberg M, Johannisson C, Wallmark H (1996) 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108:207–214

    Article  PubMed  Google Scholar 

  • Hubick K, Farquhar G (1989) Carbon isotope discrimination and the ratio of carbon gained to water lost in barley cultivars. Plant Cell Environ 12:795–804

    Article  Google Scholar 

  • Kaehler S, Pakhomov EA (2001) Effects of storage and preservation on the δ 13C and δ 15N signatures of selected marine organisms. Mar Ecol Prog Ser 219:299–304

    Article  CAS  Google Scholar 

  • Kalcsits LA, Guy RD (2013) Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana. Physiol Plant 149:249–259

    Article  CAS  PubMed  Google Scholar 

  • Kalcsits LA, Buschhaus HA, Guy RD (2014) Nitrogen isotope discrimination as an integrated measure of nitrogen fluxes, assimilation and allocation in plants. Physiol Plant 151:293–304

    Article  CAS  PubMed  Google Scholar 

  • Kleiner KW, Abrams MD, Schultz JC (1992) The impact of water and nutrient deficiencies on the growth, gas-exchange and water relations of red oak and chestnut oak. Tree Physiol 11:271–287

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Pablico PP, Aragones DV, Agbisit R (2004) Genotypic variations in carbon isotope discrimination, transpiration efficiency, and biomass production in rice as affected by soil water conditions and N. Plant Soil 267:165–177

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Schjoerring JK, Erner Y, Kirk GJD, Siddiqi MY, Glass ADM (1998) Dynamic interactions between root NH4 + influx and long-distance N translocation in rice: insights into feedback processes. Plant Cell Physiol 39:1287–1293

    Article  CAS  Google Scholar 

  • Le Roux X, Sinoquet H, Vandame M (1999) Spatial distribution of leaf dry weight per area and leaf nitrogen concentration in relation to local radiation regime within an isolated tree crown. Tree Physiol 19:181–188

    Article  PubMed  Google Scholar 

  • Le Roux X, Walcroft AS, Daudet FA, Sinoquet H, Chaves MM, Rodrigues A, Osorio L (2001) Photosynthetic light acclimation in peach leaves: importance of changes in mass: area ratio, nitrogen concentration, and leaf nitrogen partitioning. Tree Physiol 21:377–386

    Article  PubMed  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Li FS, Kang SZ, Zhang JH, Cohen S (2003) Effects of atmospheric CO2 enrichment, water status and applied nitrogen on water- and nitrogen-use efficiencies of wheat. Plant Soil 254:279–289

    Article  CAS  Google Scholar 

  • Li K, Liu X, Song L, Gong Y, Lu C, Yue P, Tian C, Zhang F (2015a) Response of alpine grassland to elevated nitrogen deposition and water supply in China. Oecologia 177:65–72

    Article  PubMed  Google Scholar 

  • Li YJ, Sun DD, Li DD, Xu ZF, Zhao CZ, Lin HH, Liu Q (2015b) Effects of warming on ectomycorrhizal colonization and nitrogen nutrition of Picea asperata seedlings grown in two contrasting forest ecosystems. Sci Rep. doi:10.1038/srep17546

    Google Scholar 

  • Lopes MS, Araus JL (2006) Nitrogen source and water regime effects on durum wheat photosynthesis and stable carbon and nitrogen isotope composition. Physiol Plant 126:435–445

    Article  CAS  Google Scholar 

  • Lopes MS, Nogues S, Araus JL (2004) Nitrogen source and water regime effects on barley photosynthesis and isotope signature. Funct Plant Biol 31:995–1003

    Article  CAS  Google Scholar 

  • Lü XT, Dijkstra FA, Kong DL, Wang ZW, Han XG (2014) Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland. Sci Rep. doi:10.1038/srep04817

    Google Scholar 

  • Orchard KA, Cernusak LA, Hutley LB (2010) Photosynthesis and water-use efficiency of seedlings from northern Australian monsoon forest, savanna and swamp habitats grown in a common garden. Funct Plant Biol 37:1050–1060

    Article  Google Scholar 

  • Patrick LD, Ogle K, Tissue DT (2009) A hierarchical Bayesian approach for estimation of photosynthetic parameters of C3 plants. Plant Cell Environ 32:1695–1709

    Article  CAS  PubMed  Google Scholar 

  • Penuelas J, Rutishauser T, Filella I (2009) Phenology feedbacks on climate change. Science 324:887–888

    Article  CAS  PubMed  Google Scholar 

  • Peuke AD, Gessler A, Rennenberg H (2006) The effect of drought on C and N stable isotopes in different fractions of leaves, stems and roots of sensitive and tolerant beech ecotypes. Plant Cell Environ 29:823–835

    Article  CAS  PubMed  Google Scholar 

  • Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12:470–476

    Article  Google Scholar 

  • Pintó-Marijuan M, Da SA, Flexas J, Dias T, Zarrouk O, Martins-Loução MA, Chaves MM, Cruz C (2013) Photosynthesis of Quercus suber is affected by atmospheric NH3 generated by multifunctional agrosystems. Tree Physiol 33:1328–1337

    Article  PubMed  Google Scholar 

  • Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008) Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Glob Change Biol 14:142–153

    Google Scholar 

  • Pritchard ES, Guy RD (2005) Nitrogen isotope discrimination in white spruce fed with low concentrations of ammonium and nitrate. Trees 19:89–98

    Article  CAS  Google Scholar 

  • Robinson D, Handley LL, Scrimgeour CM, Gordon DC, Forster BP, Ellis RP (2000) Using stable isotope natural abundances (δ 15N and δ 13C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch.) genotypes. J Exp Bot 51:41–50

    CAS  PubMed  Google Scholar 

  • Schwinning S, Starr BI, Wojcik NJ, Miller ME, Ehleringer JE, Sanford RL (2005) Effects of nitrogen deposition on an arid grassland in the Colorado plateau cold desert. Rangel Ecol Manag 58:565–574

    Article  Google Scholar 

  • Seibt U, Rajabi A, Griffiths H, Berry JA (2008) Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155:441–454

    Article  PubMed  Google Scholar 

  • Tambussi EA, Casadesus J, Munne-Bosch SM, Araus JL (2002) Photoprotection in water-stressed plants of durum wheat (Triticum turgidum var. durum): changes in chlorophyll fluorescence, spectral signature and photosynthetic pigments. Funct Plant Biol 29:35–44

    Article  CAS  Google Scholar 

  • Tang B, Yin CY, Wang YJ, Sun YY, Liu Q (2016) Positive effects of night warming on physiology of coniferous trees in late growing season: leaf and root. Acta Oecol 73:21–30

    Article  Google Scholar 

  • Valladares F, Martinez-Ferri E, Balaguer L, Perez-Corona E, Manrique E (2000) Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytol 148:79–91

    Article  CAS  Google Scholar 

  • van den Driessche R, Rude W, Martens L (2003) Effect of fertilization and irrigation on growth of aspen (Populus tremuloides Michx.) seedlings over three seasons. For Ecol Manage 186:381–389

    Article  Google Scholar 

  • Wang M, Shi S, Lin F, Hao Z, Jiang P, Dai G (2012) Effects of soil water and nitrogen on growth and photosynthetic response of manchurian Ash(Fraxinus mandshurica) Seedlings in Northeastern China. PLoS One 7:e30754. doi:10.1371/journal.pone.0030754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welander NT, Ottosson B (2000) The influence of low light, drought and fertilization on transpiration and growth in young seedlings of Quercus robur L. For Ecol Manage 127:139–151

    Article  Google Scholar 

  • Yin CY, Pang XY, Chen K (2009) The effects of water, nutrient availability and their interaction on the growth, morphology and physiology of two poplar species. Environ Exp Bot 67:196–203

    Article  CAS  Google Scholar 

  • Yin CY, Pang XY, Chen K, Gong RG, Xu G, Wang X (2012) The water adaptability of Jatropha curcas is modulated by soil nitrogen availability. Biomass Bioenerg 47:71–81

    Article  CAS  Google Scholar 

  • Yoneyama T, Matsumaru T, Usui K, Engelaar W (2001) Discrimination of nitrogen isotopes during absorption of ammonium and nitrate at different nitrogen concentrations by rice (Oryza sativa L.) plants. Plant Cell Environ 24:133–139

    Article  CAS  Google Scholar 

  • Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL (2007) Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 154:349–359

    Article  PubMed  Google Scholar 

  • Zhou X, Zhang Y, Ji X, Downing A, Serpe M (2011) Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China. Environ Exp Bot 74:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 31370495 and 31070533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunying Yin.

Additional information

Communicated by M Garstka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Yin, C., Yang, H. et al. The coupling effects of water deficit and nitrogen supply on photosynthesis, WUE, and stable isotope composition in Picea asperata . Acta Physiol Plant 39, 148 (2017). https://doi.org/10.1007/s11738-017-2451-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2451-4

Keywords

Navigation