Skip to main content

Advertisement

Log in

Effect of drought stress on metabolite contents in barley recombinant inbred line population revealed by untargeted GC–MS profiling

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Drought stress is perhaps one of the most common abiotic factors which crop plants have to cope with. To survive, plants have to adapt to periods of water deficit that may occur during their vegetation. This can be achieved by triggering various changes in the plant genome, transcriptome, proteome, and metabolome, leading to different physiological and biochemical reactions of plants. We have compared changes in barley leaf and root metabolomes in response to drought in recombinant inbred line (RIL) population derived from hybrids between two spring genotypes: German variety Maresi and Syrian breeding line Cam/B1//CI08887/CI05761. Response of plants to drought of the studied barley lines was rather conservative; most barley genotypes changed their metabolome composition independently in leaf and root. Based on analysis of variance, metabolites were classified with respect to significance of difference between lines, drought effect (understood as the difference between metabolite level in drought and control plants), and line × drought interaction. The revealed changes in accumulation of some metabolites, e.g., proline and other amino acids, carbohydrates or carboxylic acids have been regarded to be a basic plant strategy for acquiring drought stress tolerance. It was possible to draw some general inferences from obtained results: changes of metabolites involved in barley response to drought were rather similar qualitatively but varied quantitatively among the studied RILs. Compatible solutes and osmolytes were the major group of compounds accumulated under drought. We have also observed significant organ specificity between leaf and root response to drought at the metabolome level in all recognized metabolites classes. Moreover, we have found metabolites which differentiated tested genotypes under drought—and these compounds might be considered as potential biomarkers associated with drought tolerance in barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Barchet GLH, Dauwe R, Guy RD, Schroeder WR, Soolanayakanahally RY, Campbell MM, Mansfield SD (2014) Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling. Tree Physiol 34:1203–1219

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bascuñán-Godoy L, Reguera M, Abdel-Tawab YM, Blumwald E (2016) Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd. Planta 243:591–603

    Article  PubMed  Google Scholar 

  • Bennet-Clark A (1933) The role of the organic acids in plant metabolism. New Phytol 32:37–71

    Article  CAS  Google Scholar 

  • Bhargava S, Sawant K (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression (R Tuberosa, Ed.). Plant Breeding 132:21–32

    Article  CAS  Google Scholar 

  • Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H (2010) Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Mol Plant Pathol 11:769–782

    CAS  PubMed  Google Scholar 

  • Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5:418–429

    Article  CAS  PubMed  Google Scholar 

  • Bunzel M (2010) Chemistry and occurrence of hydroxycinnamate oligomers. Phytochem Rev 9:47–64

    Article  CAS  Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  CAS  PubMed  Google Scholar 

  • Chmielewska K, Rodziewicz P, Swarcewicz B. Sawikowska A, Krajewski P, Marczak Ł, Ciesiołka D, Kuczyńska A, Mikołajczak K, Ogrodowicz P, Krystkowiak K, Surma M, Adamski T, Bednarek P, Stobiecki M (2016) Analysis of drought-induced proteomic and metabolomic changes in barley (Hordeum vulgare L.) leaves and roots unravels some aspects of biochemical mechanisms involved in drought tolerance. Front Plant Sci 7, Article no 1108

  • Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends WCEI, Witkamp G-J, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156:1701–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuadros-Inostroza Á, Caldana C, Redestig H, Kusano M, Lisec J, Peña-Cortés H, Willmitzer L, Hannah MA (2009) TargetSearch: a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinform 10:428

    Article  Google Scholar 

  • Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agr Biol Environ Stat 11:381–393

    Article  Google Scholar 

  • Degenkolbe T, Do PT, Kopka J, Zuther E, Hincha DK, Köhl KI (2013) Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling (GK Pandey, Ed.). PLoS One 8:e63637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62:815–816

    Article  CAS  PubMed  Google Scholar 

  • Do PT, Prudent M, Sulpice R, Causse M, Fernie AR (2010) The influence of fruit load on the tomato pericarp metabolome in a Solanum chmielewskii introgression line population. Plant Physiol 154:1128–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48

    Article  CAS  PubMed  Google Scholar 

  • Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675

    Article  CAS  Google Scholar 

  • Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong L, Chen W, Gao Y, Liu X, Zhang H, Xu C, Yu S, Zhang Q, Luo J (2013) Genetic analysis of the metabolome exemplified using a rice population. Proc Natl Acad Sci 110:20320–20325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Górny AG (2001) Variation in utilization efficiency and tolerance to reduced water and nitrogen supply among wild and cultivated barleys. Euphytica 117:59–66

    Article  Google Scholar 

  • Haupt-Herting S, Fock HP (2002) Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Ann Bot 89 Spec No, 851–9

  • Huang CY, Roessner U, Eickmeier I, Genc Y, Callahan DL, Shirley N, Langridge P, Bacic A (2008) Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol 49:691–703

    Article  CAS  PubMed  Google Scholar 

  • Jadczyszyn T, Kowalczyk J, Lipiński W (2008) Fertilization recommendations for field crops and permanent grassland. Dissemination Instruction IUNG-PIB 151: p 24

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the Rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35:620–649

    Article  CAS  PubMed  Google Scholar 

  • Keurentjes JJ (2009) Genetical metabolomics: closing in on phenotypes. Curr Opin Plant Biol 12:223–230

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, D’Auria JC, Behere AS, Kim JH, Gunderson KL, Breen JN, Lee G, Gershenzon J, Last RL, Jander G (2007) Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J 51:1062–1076

    Article  CAS  PubMed  Google Scholar 

  • Kopka J (2006) Current challenges and developments in GC–MS based metabolite profiling technology. J Biotechnol 124:312–322

    Article  CAS  PubMed  Google Scholar 

  • Kopka J, Schauer N, Krueger S et al (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Kováčik J, Klejdus B, Babula P, Jarošová M (2014) Variation of antioxidants and secondary metabolites in nitrogen-deficient barley plants. J Plant Physiol 171:260–268

    Article  PubMed  Google Scholar 

  • Kumaraswamy KG, Kushalappa AC, Choo TM, Dion Y, Rioux S (2011) Mass spectrometry based metabolomics to identify potential biomarkers for resistance in barley against fusarium head blight (Fusarium graminearum). J Chem Ecol 37:846–856

    Article  CAS  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Article  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Lescano CI, Martini C, González CA, Desimone M (2016) Allantoin accumulation mediated by allantoinase downregulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants. Plant Mol Biol 91:581–595

    Article  CAS  PubMed  Google Scholar 

  • Mazzucotelli E, Tartari A, Cattivelli L, Forlani G (2006) Metabolism of -aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J Exp Bot 57:3755–3766

    Article  CAS  PubMed  Google Scholar 

  • Mikołajczak K, Ogrodowicz P, Gudyś K et al (2016) Quantitative trait loci for yield and yield-related traits in spring barley populations derived from crosses between European and Syrian cultivars (M Li, Ed.). PLoS One 11(5):e0155938

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikołajczak K, Kuczyńska A, Krajewski P et al (2017) Quantitative trait loci for plant height in Maresi × CamB barley population and their associations with yield-related traits under different water regimes. J Appl Genet 58:23–35

    Article  PubMed  Google Scholar 

  • Moco S, Vervoort J, Moco S, Bino RJ, De Vos RCH, Bino R (2007) Metabolomics technologies and metabolite identification. TrAC Trends Anal Chem 26:855–866

    Article  CAS  Google Scholar 

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K et al (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piasecka A, Sawikowska A, Krajewski P, Kachlicki P (2015a) Combined mass spectrometric and chromatographic methods for in-depth analysis of phenolic secondary metabolites in barley leaves. J Mass Spectrom 50:513–532

    Article  CAS  PubMed  Google Scholar 

  • Piasecka A, Jedrzejczak-Rey N, Bednarek P (2015b) Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol 206:948–964

    Article  PubMed  Google Scholar 

  • Piasecka A, Sawikowska A, Kuczyńska A, Ogrodowicz P, Mikołajczak K, Krystkowiak K, Gudyś K, Guzy-Wróbelska J, Krajewski P, Kachlicki P (2016) Drought related secondary metabolites of barley (Hordeum vulgare L.) leaves and their mQTLs. Plant J. doi:10.1111/tpj.13430

  • Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci 109:8872–8877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky L (2004) When defense pathways collide. The response of arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roessner U, Patterson JH, Forbes MG, Fincher GB, Langridge P, Bacic A (2006) An investigation of boron toxicity in barley using metabolomics. Plant Physiol 142:1087–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Shannon P (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp RE (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    Article  CAS  PubMed  Google Scholar 

  • Sicher RC, Timlin D, Bailey B (2012) Responses of growth and primary metabolism of water-stressed barley roots to rehydration. J Plant Physiol 169:686–695

    Article  CAS  PubMed  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J Cell Mol Biol 29:417–426

    Article  CAS  Google Scholar 

  • Toubiana D, Semel Y, Tohge T, Beleggia R, Cattivelli L, Rosental L, Nikoloski Z, Zamir D, Fernie AR, Fait A (2012) Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations (GP Copenhaver, Ed.). PLoS Genet 8:e1002612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullrich SE (2011) Significance, adaptation, production, and trade of barley. Barley. Wiley-Blackwell, Oxford, pp 3–13

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • VSN International (2013) GenStat for Windows, 16th edn. Hemel Hempstead, UK

    Google Scholar 

  • Wen W, Li D, Li X et al (2014) Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nature Commun 5:3438

    Google Scholar 

  • Widodo Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL, Palacios-Rojas N, Fernie AR (2012) Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant 5:401–417

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G (2013a) Tissue metabolic responses to salt stress in wild and cultivated barley (M Xu, Ed.). PLoS One 8:e55431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Shen Q, Cai S, Chen Z-H, Dai F, Zhang G (2013b) Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant Cell Physiol 54:1976–1988

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Zeiger E (1983) The biology of stomatal guard cells. Ann Rev Plant Physiol 34:441–474

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Regional Development Fund through the Innovative Economy Program for Poland 2007–2013, project WND-POIG.01.03.01-00-101/08 POLAPGEN-BD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paweł Krajewski or Maciej Stobiecki.

Additional information

Communicated by J. Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swarcewicz, B., Sawikowska, A., Marczak, Ł. et al. Effect of drought stress on metabolite contents in barley recombinant inbred line population revealed by untargeted GC–MS profiling. Acta Physiol Plant 39, 158 (2017). https://doi.org/10.1007/s11738-017-2449-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2449-y

Keywords

Navigation