Skip to main content

Advertisement

Log in

Differential growth and yield responses of salt-tolerant and susceptible rice cultivars to individual (Na+ and Cl) and additive stress effects of NaCl

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Negative impacts exerted by sodium (Na+) and chloride (Cl) ions individually as well their possible additive effects (under NaCl) were evaluated on growth and yield reductions in rice, besides investigating whether salt-tolerant genotypes respond differentially than their sensitive counterparts. Though both Na+ and Cl ions get accumulated in plant tissues under NaCl stress, most research has historically been aimed to decipher harmful effects induced by Na+ ions. Accordingly, physiological and molecular mechanisms involved in Cl toxicity are not clearly understood in crop plants. To address these issues, 65-day-old plants of two rice cultivars, Panvel-3 (tolerant) and Sahyadri-3 (sensitive) were subjected to Cl, Na+ and NaCl (each with 100 mM concentration and electrical conductivity of ≈10 dS m−1) stress using soil-based systems. Stress conditions were maintained till harvesting of mature (128-day-old) plants. All three treatments induced substantial antagonistic effects on growth, dry mass, yield components (number of grains per panicle, length, width, thickness and weight of grain, along with the percentage of grains filled) and overall crop yield, with greater impacts under NaCl than its constituent ions. Salinity treatments caused an imbalance in reducing sugars, protein, starch and proline contents, with the greatest magnitude under NaCl. A negative correlation between Cl/Na+ accumulation and crop yield was witnessed, with higher severity on the sensitive cultivar. The overall magnitude of toxicity was observed highest in NaCl followed by Na+ and Cl, respectively, suggesting additive effects of constituent ions under NaCl. Both cultivars responded similarly; however, the tolerant cultivar, unlike the sensitive one, kept Na+:K+ ratio <1.0 and accumulated proline in response to salinity treatments used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdullah Z, Khan MA, Flowers TJ (2001) Causes of sterility and seed set in rice under salinity stress. J Agron Crop Sci 187:25–32. doi:10.1046/j.1439-037X.2001.00500.x

    Article  Google Scholar 

  • Bates LS, Waldran RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208. doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Boriboonkaset T, Theerawitaya C, Pichakum A, Cha-um S, Takabe T, Kirdmanee C (2012) Expression levels of some starch metabolism related genes in flag leaf of two contrasting rice. Aust J Crop Sci 6:1579–1586

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Chapman HD, Pratt PF (1961) Method for analysis of soil, plants and waters. University of California, Berkeley

    Google Scholar 

  • Danai-Tambhale S, Kumar V, Shriram V (2011) Differential response of two scented indica rice (Oryza sativa) cultivars under salt stress. J Stress Physiol Biochem 7:387–397

    Google Scholar 

  • Dang YP, Dalal RC, Mayer DG, McDonald M, Routley R, Schwenke GD, Buck SR, Daniells IG, Singh DK, Manning W, Ferguson N (2008) High subsoil chloride concentrations reduce soil water extraction and crop yield on Vertisols in north-eastern Australia. Aust J Agr Res 59:321–330. doi:10.1071/AR07192

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Fabre D, Siband PL, Dingkuhn M (2005) Characterizing stress effects on rice grain development and filling using grain weight and size distribution. Field Crops Res 92:11–16. doi:10.1016/j.fcr.2004.07.024

    Article  Google Scholar 

  • Fageria NK (2007) Yield physiology of rice. J Plant Nutr 30:843–879. doi:10.1080/15226510701374831

    Article  CAS  Google Scholar 

  • Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Selamat A, Rafii MY, Latif MA (2014) Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes. Biomed Res Int 2014:208584. doi:10.1155/2014/208584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He JF, Goyal R, Laroche A, Zhao ML, Lu ZX (2013) Effects of salinity stress on starch morphology, composition and thermal properties during grain development in triticale. Can J Plant Sci 93:765–771. doi:10.4141/CJPS2013-065

    Article  CAS  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) Methods of estimating starch and carbohydrates. In: Whistler RL, Miller JN (eds) Carbohydrate chemistry for food scientists. Eagan Press/AACC, St. Paul Minn, pp 163–201

    Google Scholar 

  • Javid MG, Sorooshzadeh A, Sanavy SAMM, Allahdadi I, Moradi F (2011) Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress. Plant Growth Regul 65:305–313. doi:10.1007/s10725-011-9602-1

    Article  Google Scholar 

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311. doi:10.1111/pce.12157

    Article  CAS  PubMed  Google Scholar 

  • Kavi Kishor PB, Kumari PH, Sunita MSL, Sreenivasulu N (2015) Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front Plant Sci 6:544. doi:10.3389/fpls.2015.00544

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Shirazi MU, Khan MA, Mujtaba SM, Islam E, Mumtaz S (2009) Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). Pak J Bot 41:633–638

    Google Scholar 

  • Khare T, Kumar V, Kishor PBK (2014) Na+ and Cl ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252:1149–1165. doi:10.1007/s00709-014-0749-2

    Article  PubMed  Google Scholar 

  • Kotula L, Khan HA, Quealy J, Turner NC, Vadez V, Siddique KHM, Clode PL, Colmer CT (2015) Salt sensitivity in chickpea (Cicer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes. Plant Cell Environ 38:1565–1577. doi:10.1111/pce.12506

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Khare T (2015) Individual and additive effects of Na+ and Cl ions on rice under salinity stress. Arch Agron Soil Sci 61:381–395. doi:10.1080/03650340.2014.936400

    Article  CAS  Google Scholar 

  • Kumar V, Shriram V, Nikam TD, Jawali N, Shitole MG (2008) Sodium chloride-induced changes in mineral nutrients and proline accumulation in Indica rice cultivars differing in salt tolerance. J Plant Nutr 31:1999–2017. doi:10.1080/01904160802403466

    Article  CAS  Google Scholar 

  • Kumar V, Shriram V, Hussain MA, Kavi Kishor PB (2015) Engineering proline metabolism for enhanced plant salt stress tolerance. In: Wani SH, Hussain MA (eds) Managing salinity tolerance in plants: molecular and genomic perspectives. CRC Press, Taylor & Francis Group, Boca Raton, pp 353–372. ISBN 978-1-4822-4513-4

    Chapter  Google Scholar 

  • Lin CC, Kao CH (2001) Relative importance of Na+, Cl, and abscisic acid in NaCl-induced inhibition of root growth of rice seedlings. Plant Soil 237:165–171. doi:10.1023/A:1013321813454

    Article  CAS  Google Scholar 

  • Llanes A, Bertazza G, Palacio G, Luna V (2013) Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biol 15:118–125. doi:10.1111/j.1438-8677.2012.00626.x

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Yu B, Liu Y (2005) Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol 162:1003–1012. doi:10.1016/j.jplph.2004.11.008

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852. doi:10.1007/BF00037793

    Article  CAS  Google Scholar 

  • Mohammadi R, Mendioro MS, Diaz GQ, Gregorio GB, Singh RK (2013) Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.). J Genet 92:433–443

    Article  CAS  PubMed  Google Scholar 

  • Moya JL, Gomez-Cadenas A, Primo-Millo E, Talon M (2003) Chloride absorption in salt-sensitive carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J Exp Bot 54:825–833. doi:10.1093/jxb/erg064

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C et al (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364. doi:10.1038/nbt.2120

    Article  CAS  PubMed  Google Scholar 

  • Ranjit SL, Manish P, Penna S (2015) Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard (Brassica juncea L.). Protoplasma 253:101–110. doi:10.1007/s00709-015-0792-7

    Article  PubMed  Google Scholar 

  • Rasheed R, Wahid A, Hussain I, Mahmood S, Parveen A (2015) Partial repair of salinity-induced damage to sprouting sugarcane buds by proline and glycinebetaine pretreatment. Protoplasma 253:803–813. doi:10.1007/s00709-015-0841-2

    Article  PubMed  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Aust J Soil Res 37:613–620

    Google Scholar 

  • Saleethong P, Sanitchon J, Kong-ngern K, Theerakulpisut P (2013) Effects of exogenous spermidine (Spd) on yield, yield-related parameters and mineral composition of rice (Oryza sativa L. ssp. indica) grains under salt stress. Aust J Crop Sci 7:1293–1301

    Google Scholar 

  • Slabu C, Zorb C, Steffens D, Schubert S (2009) Is salt stress of faba bean (Vicia faba) caused by Na+ or Cl toxicity? J Plant Nutr Soil Sci 172:644–650. doi:10.1002/jpln.200900052

    Article  CAS  Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  • Sreenivasulu N, Butardo VM, Misra G, Cuevas RP, Anacleto R, Kishor PBK (2015) Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot 66:1737–1748. doi:10.1093/jxb/eru544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surekha Rao P, Mishra B, Gupta SR (2013) Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes. Rice Sci 20:284–291. doi:10.1016/S1672-6308(13)60136-5

    Article  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459. doi:10.1093/jxb/erq251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203. doi:10.1093/jxb/erq422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teakle NL, Tyerman SD (2010) Mechanisms of Cl transport contributing to salt tolerance. Plant Cell Environ 33:566–589. doi:10.1111/j.1365-3040.2009.02060.x

    Article  CAS  PubMed  Google Scholar 

  • Tsai YC, Hong C-Y, Liu L-F, Kao H (2004) Relative importance of Na+ and Cl in NaCl-induced antioxidant systems in roots of rice seedlings. Physiol Plant 122:86–94. doi:10.1111/j.1399-3054.2004.00387.x

    Article  CAS  Google Scholar 

  • Turan S, Tripathy BC (2013) Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250:209–222. doi:10.1007/s00709-012-0395-5

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988. doi:10.1006/anbo.2001.1540

    Article  CAS  Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkafi U (2000) Advances in chloride nutrition of plants. Adv Agron 68:97–150. doi:10.1016/S0065-2113(08)60844-5

    Article  CAS  Google Scholar 

  • Zeng L, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40:996–1003. doi:10.2135/cropsci2000.404996x

    Article  Google Scholar 

  • Zhang XK, Zhou QH, Cao JH, Yu BJ (2011) Differential Cl salt tolerance and NaCl-induced alternations of tissue and cellular ion fluxes in Glycine max, Glycine soja and their hybrid seedlings. J Agron Crop Sci 197:329–339. doi:10.1111/j.1439-037x.2011.00467.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Engineering Research Board (SERB, Government of India) [Grant Number SR/FT/LS-93/2011] and partially through the Board of College and University Development, Savitribai Phule Pune University, Pune research grant. Authors acknowledge the support from college authorities and use of facilities generated through DST-FIST program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar.

Ethics declarations

Conflict of interest

None.

Additional information

Communicated by B. Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Khare, T. Differential growth and yield responses of salt-tolerant and susceptible rice cultivars to individual (Na+ and Cl) and additive stress effects of NaCl. Acta Physiol Plant 38, 170 (2016). https://doi.org/10.1007/s11738-016-2191-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2191-x

Keywords

Navigation