Skip to main content

Advertisement

Log in

The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

High temperature is an environmental stress which destroys agricultural crops and inhibits their growth and productivity. The aim of current investigation was to examine the role of selenium (Se) on cucumber (Cucumis sativus L.) cv. Sahil plant growth, physio-biochemical and yield attributes under heat stress (HS) in controlled conditions. Plants were grown under normal temperature (NT; 28/18 °C day/night) from sowing to 32 days after sowing (DAS). All plants were foliar-sprayed with Se (8 µM) at flower-initiation stage (32-DAS) and heat stress (HS; 40/30 °C day/night) was induced from 35-DAS to entire duration of the experiment (75-DAS). Data regarding growth, physio-biochemical and yield traits were measured. Heat stress decreased growth traits, total chlorophyll contents, chlorophyll fluorescence parameters, photosynthesis (Pn), stomatal conductance (g s), transpiration rate (E), antioxidant enzyme activities, membrane stability index (MSI) and yield-related attributes, while increased intercellular CO2 (Ci), ROS production, lipid peroxidation (LPO), non-photochemical quenching (NPQ) and compatible solutes. Exogenous application of Se mitigated HS-induced injurious effects by improving growth components, Pn, g s, E, chlorophyll content, chlorophyll fluorescence parameters, antioxidant enzyme activities, level of osmolytes, MSI and yield attributes and reducing ROS, LPO and NPQ. Selenium reversed heat-induced oxidative damage by strengthening antioxidative mechanism, which resulted in higher scavenging of ROS, thereby minimizing LPO. It is suggested that Se-induced improvement in Pn, growth and productivity associated traits under HS is linked with enhanced antioxidant activities and osmolytes accumulation. In addition, Se applied at flower initiation is highly effective in alleviating heat damage in cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas T, Balal RM, Shahid MA, Pervez MA, Ayyub CM, Aqueel MA, Javaid MM (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol Plant 37:1–15

    Article  CAS  Google Scholar 

  • Ahamed KU, Nahar K, Fujita M, Hasanuzzaman M (2010) Variation in plant growth, tiller dynamics and yield components of wheat (Triticum aestivum L.) due to high temperature stress. Adv Agric Bot 2:213–224

    Google Scholar 

  • Al-Busaidi A, Ahmed M, Chikara J (2012) The impact of heat and water stress conditions on the growth of the biofuel plant Jatropha curcas. Int J Environ St 69:273–288

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    CAS  PubMed  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Borisev M, Krstic B, Gvozdenovic D, Gvozdanovic-varga J (2012) Photosynthesis and water use efficiency relations to yield of ten pepper varieties (Capsicum annuum L.). Bulg J Agric Sci 18:589–594

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Caird MA, Richards JH, Donovan LA (2007) Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiol 143:4–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camejo D, Rodriguez P, Morales MA, Dellamico JM, Torrecillas A, Alarcon JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    Article  CAS  PubMed  Google Scholar 

  • Cartes P, Jara A, Pinilla L, Rosas A, Mora M (2010) Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Ann Appl Biol 156:297–307

    Article  CAS  Google Scholar 

  • Chen WL, Yang WJ, Lo HF, Yeh DM (2014) Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress. Sci Hortic 179:367–375

    Article  CAS  Google Scholar 

  • Dai AH, Nie YX, Yu B, Li Q, Lu LU, Bai JG (2012) Cinnamic acid pretreatment enhances heat tolerance of cucumber leaves through modulating antioxidant enzyme activity. Exp Environ Bot 79:1–10

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Prasad P, Seppanen M (2010a) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Sheeba JA, Devi DD, Bangarusamy U, Prasad P (2010b) Nitrophenolates spray can alter boll abscission rate in cotton through enhanced peroxidase activity and increased ascorbate and phenolics levels. J Plant Physiol 167:1–9

    Article  CAS  PubMed  Google Scholar 

  • Dong CJ, Wang XL, Shang QM (2011) Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Sci Hortic 129:629–636

    Article  CAS  Google Scholar 

  • El-Mageeda TA, Semida WM (2015) Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.). Agr Water Manage 159:1–10

    Article  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Feng R, Wei C, Tu S (2013a) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S (2013b) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grieve C, Grattan S (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Guo FL, Yu J, Tao J, Su J, Zhang CH (2009) Effects of high temperature stress on photosynthesis and chlorophyll fluorescence of Euphorbia pulcherrima. J Yangzhou Uni Agr. Life Sci 30:71–74

    Google Scholar 

  • Haghighi M, Abolghasemi R, Teixeira-da-Silva JA (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hortic 178:231–240

    Article  CAS  Google Scholar 

  • Hajiboland R, Sadeghzade N (2014) Effect of selenium on CO2 and NO3 assimilation under low and adequate nitrogen supply in wheat (Triticum aestivum L.). Photosynthetica 52:501–510

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Da Silva J, Fujita M (2012a) Plant responses and tolerance to abiotic oxidative stress: antioxidant defenses is a key factors. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012b) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by up regulating the antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. Intech Open Access Publisher, Croatia, pp 169–205

    Google Scholar 

  • Hasanuzzaman M, Alam MM, Nahar K, Jubayer-Al-Mahmud Ahamed KU, Fujita M (2014) Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Aust J Crop Sci 8:631–639

    CAS  Google Scholar 

  • Hawrylak-Nowak B (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res 132:259–269

    Article  CAS  PubMed  Google Scholar 

  • Hawrylak-Nowak B, Dresler S, Wojcik M (2014) Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Sci Hortic 172:10–18

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: II. Role of electron transfer. Arch Biochem Biophys 125:850–857

    Article  CAS  PubMed  Google Scholar 

  • Herrera A, Tezara W, Marin O, Rengifo E (2008) Stomatal and non-stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest. Physiol Plant 134:41–48

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The Water-Culture Method for Growing Plants without Soil. California Agricultural Experiment Station Circular, vol 347, pp 1–32

  • Jensen RG (2000) Activation of Rubisco regulates photosynthesis at high temperature and CO2. Proc Nat Acad Sci 97:12937–12938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    Article  CAS  Google Scholar 

  • Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187

    Article  CAS  Google Scholar 

  • Lawson T, Lefebvre S, Baker NR, Morison JIL, Raines CA (2008) Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. J Exp Bot 59:3609–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobanov AV, Hatfield DL, Gladyshev VN (2008) Reduced reliance on the trace element selenium during evolution of mammals. Genome Biol 9:1–11

    Article  Google Scholar 

  • Maehly A, Chance B (1954) Catalases and peroxidases. Methods Biochem Anal 1:357–424

    Article  CAS  PubMed  Google Scholar 

  • Majumder A, Sengupta S, Goswami L (2010) Osmolyte regulation in abiotic stress. In: Pareek A, Sopory SK, Bohnert HJ (eds) Abiotic stress adaptation in plants. Springer, Netherlands, pp 349–370

    Google Scholar 

  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248

    Article  CAS  Google Scholar 

  • Mohanty P, Vani B, Prakash JS (2002) Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Z Naturforsch CJ Biosci 57:836–842

    CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA (2013) Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol Trace Elem Res 151:284–293

    Article  CAS  PubMed  Google Scholar 

  • Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ (2015a) Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ Safe 113:191–200

    Article  CAS  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA, Shabbir RN, Bukhari MA (2015b) Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem 175:350–357

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Biol 49:249–279

    Article  CAS  Google Scholar 

  • Noodén LD, Singh S, Letham DS (1990) Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol 93:33–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mater 287:384–391

    Article  CAS  PubMed  Google Scholar 

  • Patterson BD, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492

    Article  CAS  PubMed  Google Scholar 

  • Peiser GD, Shang FY (1978) Chlorophyll destruction in the presence of bisulfite and linoleic acid hydroperoxide. Phytochem 17:79–84

    Article  CAS  Google Scholar 

  • Pezzarossa B, Rosellini I, Borghesi E, Tonutti P, Malorgio F (2014) Effects of Se-enrichment on yield, fruit composition and ripening of tomato (Solanum lycopersicum) plants grown in hydroponics. Sci Hortic 165:106–110

    Article  CAS  Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10:23–36

    Article  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Prasad PVV, Craufurd PQ, Summerfield RJ, Wheeler TR (1999) Effects of short episodes of heat stress on flower production and fruit-set of groundnut (Arachis hypogaea L.). J Exp Bot 345:777–784

    Google Scholar 

  • Prasad PV, Boote KJ, Allen LH (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139:237–251

    Article  Google Scholar 

  • Prasad PV, Vu JC, Boote KJ, Allen LH (2009) Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Funct Plant Biol 36:761–769

    Article  CAS  Google Scholar 

  • Proietti P, Luigi N, Buono DD, D’Amato R, Tedeschini E, Daniele DB, Roberto D, Emma T, Daniela B (2013) Selenium protects olive (Olea europaea L.) from drought stress. Sci Hortic 164:165–171

    Article  CAS  Google Scholar 

  • Pucciariello C, Banti V, Perata P (2012) ROS signaling as common element in low oxygen and heat stresses. Plant Physiol Biochem 59:3–10

    Article  CAS  PubMed  Google Scholar 

  • Qing X, Zhao X, Hu C, Wang P, Zhang Y, Zhang X (2015) Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. Ecotoxicol Environ Safe 114:179–189

    Article  CAS  Google Scholar 

  • Riazi A, Matsuda K, Arslan A (1985) Water-stress induced changes in concentrations of proline and other solutes in growing regions of young barley leaves. J Exp Bot 36:1716–1725

    Article  CAS  Google Scholar 

  • Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol 171:85–91

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 10:1–26

    Article  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Sullivan CY, Ross W (1979) Selection for drought and heat resistance in grain sorghum. In: Harry M, Richard CS (eds) Stress physiology in crop plants. Wiley, New York, pp 263–281

    Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Takahashi S, Nakamura T, Sakamizu M, Van WR, Yamasaki H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255

    Article  CAS  PubMed  Google Scholar 

  • Thiruvengadam M, Chung IM (2015) Selenium, putrescine, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. rapa). Food Chem 173:185–193

    Article  CAS  PubMed  Google Scholar 

  • Urbanek H, Kuzniak-Gebarowska E, Herka K (1991) Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol Plant 13:43–50

    CAS  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120:219–228

    Article  PubMed  Google Scholar 

  • Whiteman PC, Koller D (1967) Interactions of carbon dioxide concentration, light intensity and temperature on plant resistances to water vapour and carbon dioxide diffusion. New Phytol 66:463–473

    Article  CAS  Google Scholar 

  • Xue T, Hou S, Tan J, Liu G (1993) The antioxidative function of selenium in higher plants: II. Non-enzymatic mechanisms. Chin Sci Bull 38:356–358

    Google Scholar 

  • Zhang S, Ma K, Chen L (2003) Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. Environ Exp Bot 49:121–133

    Article  Google Scholar 

Download references

Acknowledgments

The authors highly acknowledge the Higher Education Commission of Pakistan for financial assistance video project No. 20-2315/NRPU/R&D/HEC/12 to conduct this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashad Mukhatar Balal.

Additional information

Communicated by G Klobus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balal, R.M., Shahid, M.A., Javaid, M.M. et al. The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress. Acta Physiol Plant 38, 158 (2016). https://doi.org/10.1007/s11738-016-2174-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2174-y

Keywords

Navigation