Skip to main content
Log in

Tobacco necrosis virus replication and spread in Arabidopsis thaliana ecotype Columbia: a potential system for studying plant defense reactions to symptomless virus infections

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana is susceptible to various different pathogens (fungi, bacteria, viruses). However, the effect of Tobacco necrosis virus (TNV) infection on Arabidopsis is not well known. TNV causes local necrotic and chlorotic lesions in the Arabidopsis ecotype Wassilewskija (Vannini et al., Physiol Mol Plant Pathol 69:26–42, 2006) but virus replication and systemic spread was not determined. Our goal was to monitor reactions to TNV infection in the most widely used A. thaliana ecotype, ‘Columbia’ (Col-0) by assessing in planta virus replication and systemic spread. We have shown that although TNV does not cause visible symptoms in A. thaliana ecotype Col-0 it is capable of replicating in planta as determined by real-time RT-qPCR. TNV levels progressively increased in inoculated leaves up to 4 days after inoculation (DAI) with a further severalfold increase between 4 and 8 DAI. Back inoculation of Nicotiana benthamiana resulted in symptoms typical of TNV infection (i.e., local necrotic lesions) within a few days. Interestingly, only a very low TNV titer (i.e., less than 20 % of that found in inoculated leaves) was detectable in non-inoculated upper leaves of Arabidopsis Col-0 even in an advanced stage of pathogenesis (21 DAI). The almost complete absence of systemic spread suggested that the virus is not seed-transmissible which was confirmed by real-time RT-qPCR analysis of plants grown from seeds produced by TNV-infected individuals. The present study is the first to show that TNV can infect the most widely used A. thaliana ecotype, Col-0, providing a novel system for future research on plant defense mechanisms during symptomless virus infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Agudelo-Romero P, Carbonell P, de la Iglesia F, Carrera J, Rodrigo G, Jaramillo A, Pérez-Amador M-A, Elena SF (2008) Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J 5:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Ausubel FM, Katagiri F, Mindrinos M, Glazebrook J (1995) Use of Arabidopsis thaliana defense-related mutants to dissect the plant response to pathogens. Proc Natl Acad Sci USA 92:4189–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu M, Griffiths JS, Huang T-S, Wang A (2008) Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genom 9:325

    Article  Google Scholar 

  • Balázs E, Lebeurier G (1981) Arabidopsis is a host of cauliflower mosaic virus. Arabidopsis Inf Serv 18:130–134

    Google Scholar 

  • Cardoso JMS, Félix MR, Clara MIE, Oliveira S (2004) A Tobacco necrosis virus D isolate from Olea europaea L.: viral characterization and coat protein sequence analysis. Arch Virol 149:1129–1138

    Article  CAS  PubMed  Google Scholar 

  • Cardoso JMS, Félix MR, Clara MIE, Oliveira S (2005) The complete genome sequence of a new necrovirus isolated from Olea europaea L. Arch Virol 150:815–823

    Article  CAS  PubMed  Google Scholar 

  • Cardoso JMS, Félix MR, Clara MIE, Oliveira S (2009) Complete genome sequence of a Tobacco necrosis virus D isolate from olive trees. Arch Virol 154:1169–1172

    Article  CAS  PubMed  Google Scholar 

  • Cole AB, Király L, Lane LC, Wiggins EB, Ross K, Schoelz JE (2004) Temporal expression of PR-1 and enhanced mature plant resistance to virus infection is controlled by a single dominant gene in a new Nicotiana hybrid. Mol Plant Microbe In 17:976–985

    Article  CAS  Google Scholar 

  • Coutts RHA, Rigden JE, Slabas AR, Lomonossoff GP, Wise PJ (1991) The complete nucleotide sequence of tobacco necrosis virus strain D. J Gen Virol 72:1521–1529

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis KR, Hammerschmidt R (1993) Arabidopsis thaliana as a Model for Plant-Pathogen, Interactions. APS Press, St. Paul MN, USA

  • Decroocq V, Sicard O, Alamillo JM, Lansac M, Eyquard JP, García JA, Candresse T, Le Gall O, Revers F (2006) Multiple resistance traits control Plum pox virus infection in Arabidopsis thaliana. Mol Plant Microbe In 19:541–549

    Article  CAS  Google Scholar 

  • Fang L, Coutts RH (2013) Investigations on the tobacco necrosis virus D p60 replicase protein. PLoS One 8:e80912

    Article  PubMed  PubMed Central  Google Scholar 

  • Geri C, Love AJ, Cecchini E, Barrett SJ, Laird J, Covey SN, Milner JJ (2004) Arabidopsis mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV-infection and show reduced ethylene sensitivity. Plant Mol Biol 56:111–124

    Article  CAS  PubMed  Google Scholar 

  • German TL, Adkins S, Witherell A, Richmond KE, Knaack WR, Willis DK (1995) Infection of Arabidopsis thaliana ecotype columbia by tomato spotted wilt virus. Plant Mol Biol Rep 13:110–117

    Article  Google Scholar 

  • Höller K, Király L, Künstler A, Müller M, Gullner G, Fattinger M, Zechmann B (2010) Enhanced glutathione metabolism is correlated with sulfur induced resistance in Tobacco mosaic virus-infected genetically susceptible Nicotiana tabacum plants. Mol Plant Microbe In 23:1448–1459

    Article  Google Scholar 

  • Ishikawa M, Obata F, Kumagai T, Ohno T (1991) Isolation of mutants of Arabidopsis thaliana in which accumulation of tobacco mosaic virus coat protein is reduced to low levels. Mol Gen Genet 230:33–38

    Article  CAS  PubMed  Google Scholar 

  • Jakob K, Goss EM, Araki H, Van T, Kreitman M, Bergelson J (2002) Pseudomonas viridiflava and P. syringae—Natural Pathogens of Arabidopsis thaliana. Mol Plant Microbe In 15:1195–1203

    Article  CAS  Google Scholar 

  • Jeong M-A, Jeong R-D (2013) Resistance protein-mediated defense signalling in response to Turnip Crinkle Virus in Arabidopsis: recent advances. J Plant Dis Protect 120:97–104

    Article  CAS  Google Scholar 

  • Kachroo P, Yoshioka K, Shah J, Dooner HK, Klessig DF (2000) Resistance to Turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene and jasmonate independent. Plant Cell 12:677–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko Y-H, Inukai T, Suehiro N, Natsuaki T, Masuta C (2004) Fine genetic mapping of the TuNI locus causing systemic veinal necrosis by turnip mosaic virus infection in Arabidopsis thaliana. Theor Appl Genet 110:33–40

    Article  CAS  PubMed  Google Scholar 

  • King AMQ, Lefkowitz E, Adams MJ, Carstens EB (2011) Virus Taxonomy. Elsevier, Ninth Report of the International Committee on Taxonomy of Viruses

    Google Scholar 

  • Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921

    Article  CAS  PubMed  Google Scholar 

  • Künstler A, Hafez YM, Király L (2007) Transient suppression of a catalase and an alternative oxidase gene during virus-induced local lesion formation (hypersensitive response) is independent of the extent of leaf necrotization. Acta Phytopathol Entomol Hung 42:185–196

    Article  Google Scholar 

  • Laibach F (1943) Arabidopsis thaliana (L.) Heynh. als Objekt für genetische und entwicklungsphysiologische Untersuchungen. Bot Arch 44:439–455

    Google Scholar 

  • Leonelli S (2007) Arabidopsis, the botanical Drosophila: from mouse cress to model organism. Endeavour 31:34–38

    Article  PubMed  Google Scholar 

  • Martin-Martin A, Cabrera y Poch HL, Martinez-Herrera D, Ponz F (1999) Resistance to turnip mosaic Potyvirus in Arabidopsis thaliana. Mol Plant Microbe In 12:1016–1021

    Article  CAS  Google Scholar 

  • Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a Model Plant for Genome Analysis. Science 282:662–682

    Article  CAS  PubMed  Google Scholar 

  • Molnár A, Havelda Z, Dalmay T, Szutorisz H, Burgyán J (1997) Complete nucleotide sequence of tobacco necrosis virus strain DH and genes required for RNA replication and virus movement. J Gen Virol 78:1235–1239

    Article  PubMed  Google Scholar 

  • Newburn LR, Nicholson BL, Yosefi M, Cimino PA, White KA (2014) Translational readthrough in Tobacco necrosis virus-D. Virology 450–451:258–265

    Article  PubMed  Google Scholar 

  • Nordborg M, Bergelson J (1999) The effect of seed and rosette cold treatment on germination and flowering time in some Arabidopsis thaliana (Brassicaceae) ecotypes. Am J Bot 86:470–475

    Article  CAS  PubMed  Google Scholar 

  • Pantaleo V, Grieco F, Di Franco A, Martelli GP (2006) The role of the C terminal region of olive latent virus 1 coat protein in host systemic infection. Arch Virol 151:1973–1983

    Article  CAS  PubMed  Google Scholar 

  • Pereda S, Ehrenfeld N, Medina C, Delgado J, Arce-Johnson P (2000) Comparative analysis of TMV-Cg and TMV-U1 detection methods in infected Arabidopsis thaliana. J Virol Methods 90:135–142

    Article  CAS  PubMed  Google Scholar 

  • Pogány M, Koehl J, Heiser I, Elstner EF, Barna B (2004) Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. Physiol Mol Plant Pathol 65:39–47

    Article  Google Scholar 

  • Pringle CR (1998) The universal system of virus taxonomy of the International Committee on Virus Taxonomy (ICTV), including new proposals ratified since publication of the Sixth ICTV Report in 1995. Arch Virol 142(1):203–208

    Article  Google Scholar 

  • Rédei GP (1970) Arabidopsis thaliana (L.) Heynh. A review of the genetics and biology. Bibliogr Genet 20:1–151

    Google Scholar 

  • Rédei GP (1975) Arabidopsis as a genetic tool. Annu Rev Genet 9:111–127

    Article  PubMed  Google Scholar 

  • Rédei GP (1992) A heuristic glance at the past of Arabidopsis genetics. In: Koncz C, Chua NH, Schell J (eds) Methods in Arabidopsis research, World Scientific Publishing, Singapore, p 1–15

  • Rubino L, Martelli GP (2010) Necrovirus. In: Mahy BWJ, van Regenmortel MHV (eds) Desk encyclopedia of plant and fungal virology Academic Press, pp 233–235

  • Sit TL, Lommel SA (2010) Tombusviridae, encyclopedia of life sciences (ELS). Wiley, Chichester

    Google Scholar 

  • Sit T, Haikal P, Callaway A, Lommel S (2001) A single amino acid mutation in the Carnation ringspot virus capsid protein allows virion formation but prevents systemic infection. J Virol 75:9538–9542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KM, Bald JG (1935) A description of a necrotic virus disease affecting tobacco and other plants. Parasitology 27:231–245

    Article  Google Scholar 

  • Takahashi H, Goto N, Ehara Y (1994) Hypersensitive response in cucumber mosaic virus-inoculated Arabidopsis thaliana. Plant J 6:369–377

    Article  Google Scholar 

  • Teakle DS (1962) Transmission of tobacco necrosis virus by a fungus, Olpidium brassicae. Virology 18:224–231

    Article  CAS  PubMed  Google Scholar 

  • Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Di Maro A, Coraggio I, Genga A (2006) The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Pathol 69:26–42

    Article  CAS  Google Scholar 

  • Varanda CMR, Machado M, Martel P, Nolasco G, Clara MIE et al (2014) Genetic diversity of the coat protein of Olive mild mosaic virus (OMMV) and Tobacco necrosis virus D (TNV-D) isolates and its structural implications. PLoS One 9:e110941

    Article  PubMed  PubMed Central  Google Scholar 

  • Varanda CMR, Santos S, Clara MIE, Félix MR (2015) Olive mild mosaic virus transmission by Olpidium virulentus. Eur J Plant Pathol 142:197–201

    Article  Google Scholar 

  • Zheng MS, Takahashi CH, Miyazaki A, Hamamoto H, Shah J, Yamaguchi I, Kusano T (2004) Up-regulation of Arabidopsis thaliana NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signalling pathways that differ in salicylate involvement. Planta 218:740–750

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants of the Hungarian Scientific Research Fund (OTKA PD83831, PD108455 and K111995).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lóránt Király.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Kuzniak-Gebarowska.

R. Bacsó and A. Künstler contributed equally to this work and are considered as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacsó, R., Künstler, A. & Király, L. Tobacco necrosis virus replication and spread in Arabidopsis thaliana ecotype Columbia: a potential system for studying plant defense reactions to symptomless virus infections. Acta Physiol Plant 38, 139 (2016). https://doi.org/10.1007/s11738-016-2154-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2154-2

Keywords

Navigation