Skip to main content
Log in

The plasma membrane proton pump gene family in cucumber

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Plasma membrane H+-ATPase, which generates the proton gradient across the outer membrane of plant cells, plays a crucial role in the regulation of many physiological processes. In several species, PM H+-ATPase is encoded by a multigene family (HA). In contrast to Arabidopsis thaliana, Nicotiana plumbaginifolia and Oryza sativa, there is little information about the HA family in cucumber. Thus, in this study the first comprehensive analysis of the Cucumis sativus HA family was made. Using Blastn searches of cucumber whole genome shotgun reads from the GenBank database with 12 A. thaliana cDNAs encoding AtAHA1-12 proteins as the query, we retrieved a total of ten sequences, which significantly matched with AtAHAs. Phylogenetic analysis of CsHAs based on protein alignment revealed the representatives of three (I, II and IV) among five subfamilies known in other plant species. Expression patterns of genes showed their specific profiles during different phases of cucumber development and under specific exogenous factors. We also identified the putative cis-acting elements in CsHA promoters. Furthermore, the links between the patterns of cis-regulatory elements and tissue-specific or environmental-responding expression of genes as a first step to understanding the regulatory mechanism of HA in cucumber was performed. Our results provide a valuable basis for future studies aimed at explaining the role of particular H+-ATPase isoforms in cucumber responsiveness to the specific environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-Aminocyclopropane-1-carboxylic acid

HA:

H+-ATPase

CsHA:

Cucumis sativus H+-ATPase

CRE:

Cis regulatory element

ESTs:

Expressed sequence tags

GA3 :

Gibberellic acid

IAA:

Indole-3-acetic acid

TIP41:

PPA2 activator (tonoplast intrinsic protein)

PM:

Plasma membrane

SAL:

Salicilic acid

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsterfjord M, Sehnke PC, Arkell A, Larsson H, Svennelid F, Rosenquist M et al (2004) Plasma membrane H+-ATPase and 14-3-3 isoforms of Arabidopsis leaves: evidence for isoform specificity in the 14-3-3/H+-ATPase interaction. Plant Cell Physiol 45:1202–1210

    Article  CAS  PubMed  Google Scholar 

  • Arango M, Gevaudant F, Oufattole M, Boutry M (2003) The plasma-membrane proton pump ATPase: the significance of gene subfamilies. Planta 216:355–365

    CAS  PubMed  Google Scholar 

  • Axelsen KB, Venema K, Jahn T, Baunsgaard L, Palmgren MG (1999) Molecular dissection of the C-terminal regulatory domain of the plant plasma membrane H+-ATPase AHA2: mapping of residues that when altered give rise to an activated enzyme. Biochemistry 38(22):7227–7234

    Article  CAS  PubMed  Google Scholar 

  • Baltimore D (1985) Retroviruses and retrotransposons: the role of reverse trancriptase in shaping the eukaryotic genome. Cell 40:481–482

    Article  CAS  PubMed  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M et al (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter I, Young JC, Armstrong G, Foster N, Bogenschutz Cordova T et al (2005) A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. PNAS 102:2649–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD et al (2006) Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140:1151–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buch-Pedersen MJ, Pedersen BP, Veierskov B, Nissen P, Palmgren MG (2009) Protons and how they are transported by proton pumps. Eur J Physiol 457:573–579

    Article  CAS  Google Scholar 

  • Chang C, Hu Y, Sun S, Zhu Y, Ma G, Xu G (2009) Proton pump OsA8 is linked to phosphorus uptake and translocation in rice. J Exp Bot 60:557–565

    Article  CAS  PubMed  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucl Acids Res 16(22):10881–10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinform 4:25

    Article  Google Scholar 

  • Duby G, Boutry M (2009) The plant plasma membrane proton pump ATPase a highly regulated P-type ATPase with multiple physiological roles. Eur J Physiol 457:645–655

    Article  CAS  Google Scholar 

  • Ewing N, Bennett A (1994) Assessment of the number and expression of P-Type H+ATPase genes in tomato. Plant Physiol 106:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frías I, Caldeira MT, Pérez-Castiiieira JR, Navarro-Aviiió JP, Culiaiiez-Macia FA, Kuppinger O et al (1996) A major isoform of the maize plasma membrane H+-ATPase: characterization and induction by auxin in coleoptiles. Plant Cell 8:1533–1544

    PubMed  PubMed Central  Google Scholar 

  • Fuglsang AT, Tulinius G, Cui N, Palmgren MG (2006) Protein phosphatase 2A scaffolding subunit A interacts with plasma membrane H+-ATPase C-terminus in the same region as 14-3-3 protein. Physiol Plant 128:334–340

    Article  CAS  Google Scholar 

  • Fuglsang AT, Guo F, Cuin T, Qiu Q, Song C, Kristiansen K et al (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19:1617–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuglsang AT, Kristensen A, Cuin TA, Schulze WX, Persson J, Thuesen KH et al (2014) Receptor kinase-mediated control of primary active proton pumping at the plasma membrane. Plant J 80(6):951–964

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola R, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Haberer G, Mader MT, Kosarev P, Spannagl M, Yang L, Klaus FX (2006) Mayer large-scale cis-element detection by analysis of correlated expression and sequence conservation between Arabidopsis and Brassica oleracea. Plant Physiol 142(4):1589–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper J, Manney L, DeWitt N, Sussman M (1994) The plasma membrane H+-ATPase gene family in Arabidopsis: genomic sequence of AHA10 which is expressed primarily in developing seeds. Mol Gen Genet 244:572–587

    Article  CAS  PubMed  Google Scholar 

  • Hentzen AE, Smart LB, Wimmers LE, Fang H, Schroeder JI, Bennett AB (1996) Two plasma membrane H+-ATPase genes expressed in guard cells of Vicia faba are also expressed throughout the plant. Plant Cell Physiol 37:650–659

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 1:297–300

    Article  Google Scholar 

  • Houlne G, Boutry M (1994) Identification of an Arabidopsis thaliana gene encoding a plasma membrane H+-ATPase whose expression is restricted to anther tissues. Plant J 5:311–317

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Janicka-Russak M, Klobus G, Mlodzinska E, Klobus G (2009) The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress. J Plant Physiol 167:261–269

    Article  PubMed  Google Scholar 

  • Janicka-Russak M, Kabala K, Wdowikowska A, Klobus G (2011) Response of plasma membrane H+-ATPase to low temperature in cucumber roots. J Plant Res 125:291–300

    Article  PubMed  Google Scholar 

  • Janicka-Russak M, Kabala K, Wdowikowska A, Klobus G (2014) Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress. J Plant Physiol 170:915–922

    Article  Google Scholar 

  • Kabala K, Janicka-Russak M, Burzynski M, Klobus G (2008) Comparison of heavy metal effect on the proton pumps of plasma membrane and tonoplast in cucumber cells. J Plant Physiol 165:278–288

    Article  CAS  PubMed  Google Scholar 

  • Kalampanayil BD, Wimmers LE (2001) Identification and characterization of a salt-stressed-induced plasma membrane H+-ATPase in tomato. Plant Cell Environ 24:999–1005

    Article  CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasamo K (2003) Regulation of plasma membrane H+-ATPase activity by membrane environment. J Plant Res 116:517–523

    Article  CAS  PubMed  Google Scholar 

  • Klobus G (1990) Nitrate uptake and activity of plasmalemma associated ATPase in Cucumis sativus L. roots. Acta Physiol Plant 12:225–231

    CAS  Google Scholar 

  • Klobus G, Janicka-Russak M (2007) Modification of plasma membrane and vacuolar H+-ATPase in response to NaCl and ABA. J Plant Physiol 164:295–302

    Article  PubMed  Google Scholar 

  • Kozak M (1991) An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 115:887–903

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre B, Arango M, Oufattole M, Crouzet J, Purnelle B, Boutry M (2005) Identification of a Nicotiana plumbaginifolia plasma membrane H+-ATPase gene expressed in the pollen tube. Plant Mol Biol 58:775–787

    Article  CAS  PubMed  Google Scholar 

  • Lillo C, Kataya AR, Heidari B, Creighton MT, Nemie-Feyissa D, Ginbot Z et al (2014) Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. Plant Cell Environ 37(12):2631–2648

    Article  CAS  PubMed  Google Scholar 

  • Loots GG, Locksley RM, Blankespoor CM, Wang ZE, Miller W, Rubin EM et al (2000) Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Science 288:136–140

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewicz M, Jerouville B, Boutry M (1998) Signs of translational regulation within the transcript leader of a plant plasma membrane H+-ATPase gene. Plant J 14:413–423

    Article  CAS  PubMed  Google Scholar 

  • Michelet B, Boutry M (1995) The plasma membrane H+-ATPase. A highly regulated enzyme with multiple physiological function. Plant Physiol 108:1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Migocka M, Papierniak A (2010) Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol Breed 28:343–357

    Article  Google Scholar 

  • Mito N, Wimmers LE, Bennett AB (1996) Sugar regulates mRNA abundance of H+-ATPase gene family members in tomato. Plant Physiol 112:1229–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mlodzinska E, Wdowikowska A, Klobus G (2010) Identification and characterization of two genes encoding plasma membrane H+-ATPase in Cucumis sativus L. Acta Physiol Plant 32:1103–1111

    Article  CAS  Google Scholar 

  • Moriau L, Michelet B, Bogaerts P, Lambert L, Michel A, Oufattole M, Boutry M (1999) Expression analysis of two gene subfamilies encoding the plasma Membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme. Plant J 19:31–41

    Article  CAS  PubMed  Google Scholar 

  • Morsomme P, Boutry M (2000) The plant plasma membrane H+-ATPase: structure, function and regulation. Biomembranes 1465:1–16

    Article  CAS  Google Scholar 

  • Morsomme P, Kerchove d’Exaerde A, Meester SD, Thinès D, Goffeau A, Boutry M (1996) Single point mutations in various domains of a plant plasma membrane H(+)-ATPase expressed in Saccharomyces cerevisiae increase H(+)-pumping and permit yeast growth at low pH. EMBO J 15:5513–5526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morsomme P, Dambly S, Maudoux O, Boutry M (1998) Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region. J Biol Chem 273(52):34837–34842

    Article  CAS  PubMed  Google Scholar 

  • Nakajima N, Saji H, Aono M, Kondo N (1995) Isolation of cDNA for a plasma membrane H+-ATPase from guard cells of Vicia faba L. Plant Cell Physiol 36:919–924

    CAS  PubMed  Google Scholar 

  • Nicolic M, Cesco S, Monte R, Tomasi N, Gottardi S, Zamboni A, Pinton R, Varanini Z (2012) Nitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H+-ATPase activity and abundance. BMC Plant Biol 12:66

    Article  Google Scholar 

  • Niu X, Narasimhan ML, Salzman RA (1993) NaCl regulation of plasma membrane H+-ATPase gene expression in Glycophyte and Halophyte. Plant Physiol 103:712–718

    Article  Google Scholar 

  • Ouffatole M, Arango M, Boutry M (2000) Identification and expression of tree new Nicotiana plumbaginifolia genes which encode isoforms of a plasma-membrane H+-ATPase, and one of which is induced by mechanical stress. Planta 210:715–722

    Article  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  CAS  PubMed  Google Scholar 

  • Pasquier C, Promponas VJ, Palaios GA, Hamodrakas JS (1999) A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm. Protein Eng 12:381–385

    Article  CAS  PubMed  Google Scholar 

  • Perez C, Michelet B, Ferrant V, Bogaerts P, Boutry M (1992) Differential expression within a three-gene subfamily encoding a plasma membrane H+-ATPase in Nicotiana Plumbaginifolia. J Biol Chem 267:1204–1211

    CAS  PubMed  Google Scholar 

  • Pii Y, Alessandrini M, Guardini K, Zamboni A, Varanini Z (2014) Induction of high-affinity NO3− uptake in grapevine roots is an active process correlated to the expression of specific members of the NRT2 and plasma membrane H+-ATPasegene families. Funct Plant Biol 41:353–365

    Article  CAS  Google Scholar 

  • Portillo F (2000) Regulation of plasma membrane H+-ATPase in fungi and plants. BBA 1469:31–42

    CAS  PubMed  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(Web Server issue):W116–W120. doi:10.1093/nar/gki442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi R, Bate NJ, Sivasankar S, Rothstein SJ (1997) Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Plant Mol Biol 34:465–476

    Article  CAS  PubMed  Google Scholar 

  • Reineke AR, Bornberg-Bauer E, Gu J (2011) Evolutionary divergence and limits of conserved non-coding sequence detection in plant genomes. Nucleic Acids Res 39:6029–6043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson WR, Clark K, Young JC, Sussman MR (2004) An Arabidopsis thaliana plasma membrane proton pump is an essential for pollen development. Genetics 168:1677–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santi S, Locci G, Monte R, Pinton R, Varanini Z (2003) Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. J Exp Bot 54:1851–1864

    Article  CAS  PubMed  Google Scholar 

  • Santi S, Cesco S, Varanini Z, Pinton R (2005) Two plasma membrane H+ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiol Biochem 43:287–292

    Article  CAS  PubMed  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136:2475–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart AJ, Hannenhalli S, Plotkin JB (2012) Why transcription factor binding sites are ten nucleotides long. Genetics 192:973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Dudley J, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 10:1093

    Google Scholar 

  • Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  CAS  PubMed  Google Scholar 

  • Virart V, Baxter Doerner IP, Harper JF (2001) Evidence for a role in growth and salt resistance of plasma membrane H+ATPase in root endodermis. Plant J 27:191–201

    Article  Google Scholar 

  • Woycicki R, Witkowicz J, Gawronski P, Dabrowska J, Lomsadze A (2011) The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS One 6(7):e22728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Zhu Y, Muller C, Zorb C, Schubert S (2002) Adaptation of H+-pumping and PM H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 45:386–391

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Dielen V, Kinet JM, Boutry M (2000) Cosuppression of plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell 12:535–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Di T, Xu G, Chen X, Zeng H, Yan F, Shen Q (2009) Adaptation of plasma membrane H(+)-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell Environ 32:1428–1440

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632. http://www.genevestigator.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazyna Klobus.

Additional information

Communicated by E. Schleiff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2016_2152_MOESM1_ESM.tif

Supplementary material 1 (TIFF 544 kb) Figure S1. MultiAlin alignment of CsHA1 - CsHA10. High consensus amino acids are indicated with red while low consensus residues in blue; black- neutral consensus color. The black boxes mark the conserved sequences common to P-ATPases: (TGES, DKTGTLT, GDGVNDA and KGAP). The putative transmembrane domains (TMDs) are sign with green boxes

11738_2016_2152_MOESM2_ESM.tif

Supplementary material 2 (TIFF 6221 kb) Figure S2. Relative expression of CsHA2, sHA3, CsHA4, CsHA8, CsHA9 and CsHA10 in roots and leaves of 14-day-old cucumbers growing under control conditions. Expression levels measured with qPCR are given as percentage of internal standard (TIP41) copies. Error bars represent SD. For each of the two independent RNA extractions, measurements of gene expression were obtained in duplicate or triplicate

11738_2016_2152_MOESM3_ESM.tif

Supplementary material 3 (TIFF 1582 kb) Figure S3. Expression of CsHA1 measured with RT-PCR in cucumber roots and leaves of 2-week-old cucumber under hormones and stress factors. The 14-day-old plants growing in standard nutrient solution were transferred to 50 μM ABA, IAA or GA3, 100 μM salicylic acid or 150 μM ACC solutions for 5 h. The effect of NaCl, PEG and light conditions was tested after 24 h exposure of 13-day-old plants to stress factors, whereas in experiments on different nutrient supplies, 9-day-old cucumber seedlings were transferred for 5 days to the nutrient solution without -N, -P or -S. The experiment was repeated three times independently with comparable results

Supplementary material 4 (XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wdowikowska, A., Klobus, G. The plasma membrane proton pump gene family in cucumber. Acta Physiol Plant 38, 135 (2016). https://doi.org/10.1007/s11738-016-2152-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2152-4

Keywords

Navigation