Skip to main content
Log in

Comparison and verification of the genes involved in ethylene biosynthesis and signaling in apple, grape, peach, pear and strawberry

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Ethylene, which plays important roles in regulating plants’ life cycles, is biologically active in trace amounts, and its effects are of great commercial importance. The large-scale identification and comparison of the genes, which are involved in ethylene biosynthesis and signaling in multiple plants has not been reported. In this study, some key enzymes that involved in ethylene biosynthesis and signaling pathway in two non-climacteric fruits and three climacteric fruits have been identified through the comparison of gene copy number and related ESTs. The total EST number of the ethylene biosynthesis and signaling pathway related genes in grape and apple was more than that in peach. However, the ratios of the EST number in fruit to those in all the other tissues of the related genes in peach were more than that in apple and grape. We verified 27 genes in pear, 18 genes in apple, 23 genes in strawberry, 16 genes in peach and 23 genes in grape. The result showed that the transcript amounts of different members in the same gene family will be different in the expression and function of fruit ripening process. The difference between non-climacteric fruits and climacteric fruits was that the former could produce significant levels of ethylene during the ripening of fruits. Ethylene was produced during the early stages of fruit developments, which may indicate that the mechanism of ethylene perception occurs in these fruits prior to ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

    Article  CAS  PubMed  Google Scholar 

  • Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26(2):92–105

    Article  CAS  Google Scholar 

  • Bapat VA, Trivedi PK, Ghosh A, Sane VA, Ganapathi TR, Nath P (2010) Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnol Adv 28(1):94–107

    Article  CAS  PubMed  Google Scholar 

  • Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26(2):143–159

    Article  CAS  Google Scholar 

  • Binder BM (2008) The ethylene receptors: complex perception for a simple gas. Plant Sci 175:8–17

    Article  CAS  Google Scholar 

  • Bower J, Holford P, Latche A, Pech JC (2002) Culture conditions and detachment of the fruit influence the effect of ethylene on the climacteric respiration of the melon. Postharvest Biol Technol 26:135–146

    Article  CAS  Google Scholar 

  • Butt AM, Nasrullah I, Tahir S, Tong Y (2012) Comparative genomics analysis of Mycobacterium ulcerans for the identification of putative essential genes and therapeutic candidates. PLoS One 7(8):e43080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cabrera RM, Saltveit ME (2003) Survey of wound-induced ethylene production by excised root segments. Physiol Plant 119:203–210

    Article  CAS  Google Scholar 

  • Chang L, Zhang Z, Yang H, Li H, Dai H (2007) Detection of strawberry RNA and DNA viruses by RT-PCR using total nucleic acid as a template. J Phytopathol 155:431–436

    Article  CAS  Google Scholar 

  • Chaves ALS, Mello-Farias PC (2006) Ethylene and fruit ripening: from illumination gas to the control of gene expression, more than a century of discoveries. Genet Mol Biol 29(3):508–515

    Article  CAS  Google Scholar 

  • Chervin C, El-Kereamy A, Roustan JP, Latche A, Lamon J, Bouzayen M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167:1301–1305

    Article  CAS  Google Scholar 

  • Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genom 8:429

    Article  Google Scholar 

  • Dong TT, Chen GP, Tian SB, Xie QL, Yin WC, Zhang YJ, Hu ZL (2014) A non-climacteric fruit gene CaMADS-RIN regulates fruit ripening and ethylene biosynthesis in climacteric fruit. PLoS One 9(4):e95559

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Sharkawy I, Kim WS, El-Kereamy A, Jayasankar S, Svircev AM, Brown DC (2007) Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.). J Exp Bot 58(13):3631–3643

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Otero C, Matilla AJ, Rasori A, Ramina A, Bonghi C (2006) Regulation of ethylene biosynthesis in reproductive organs of damson plum (Prunus domestica L. Subsp Syriaca). Plant Sci 171:74–83

    Article  Google Scholar 

  • Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett C, Powell W (2004) The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 109(4):740–749

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Lu J, Xu X, Yang XQ, Liang S, Wu J (2012) EST-SSRs characterization and in silico alignments with linkage map SSR loci in Grape (Vitis L.) genome. Genes Genom 34(1):19–26

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  PubMed  Google Scholar 

  • Jiang TM, Wang P, Yin XR, Zhang B, Xu CJ, Li X, Chen KS (2011) Ethylene biosynthesis and expression of related genes in loquat fruit at different developmental and ripening stages. Sci Hortic 130(2):452–458

    Article  CAS  Google Scholar 

  • Johnson KR, Nicodemus-Johnson J, Danziger RS (2010) An evolutionary analysis of cAMP-specific Phosphodiesterase 4 alternative splicing. BMC Evol Biol 10:247

    Article  PubMed Central  PubMed  Google Scholar 

  • Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katz E, Lagunes PM, Riov J, Weiss D, Goldschmidt EE (2004) Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit. Planta 219:243–252

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldman KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Grierson D (2010) New perspective in ethylene signaling. Plant Signal Behav 5(5):545–549

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  CAS  PubMed  Google Scholar 

  • Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ (2011) Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genom 12:76

    Article  CAS  Google Scholar 

  • May P, Wienkoop S, Kempa S, Usadel B, Christian N, Rupprecht J, Weiss J, Recuenco-Munoz L, Ebenhoh O, Weckwerth W, Dirk W (2008) Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics 179(1):157–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mbéguié-A-Mbéguié D, Hubert O, Fils-Lycaon B, Chillet M, Baurens FC (2008) EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine). Physiol Plant 133(2):435–448

    Article  PubMed  Google Scholar 

  • McMurchie EJ, McGlasson WB, Eaks IL (1972) Treatment of fruit with propylene gives information about biogenesis of ethylene. Nature 237:235–236

    Article  CAS  PubMed  Google Scholar 

  • Moussatche P, Klee H (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279:48734–48741

    Article  CAS  PubMed  Google Scholar 

  • Murray CG, Larsson TP, Hill T, Bjorklind R, Fredriksson R, Schioth HB (2005) Evaluation of EST-data using the genome assembly. Biochem Biophys Res Co 331(4):1566–1576

    Article  CAS  Google Scholar 

  • Nath P, SaneAP Trivedi PK, Sane VA, Asif M (2007) Role of transcription factors in regulating ripening, senescence and organ abscission in plants. Steward Postharvest Rev 2:1–14

    Article  Google Scholar 

  • Qin G, Wang Y, Cao B, Wang W, Tian S (2012) Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant J 70(2):243–255

    Article  CAS  PubMed  Google Scholar 

  • Ren GH, Wang BJ, Zhu XD, Mu Q, Wang C, Tao R, Fang JG (2014) Cloning, expression, and characterization of miR058 and its target PPO during the development of grapevine berry stone. Gene 548:166–173

  • Rohrmann J, Tohge T, Alba R, Osorio S, Caldana C, McQuinn R (2011) Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant J 68:999–1013

    Article  CAS  PubMed  Google Scholar 

  • Schaller GE (2012) Ethylene and the regulation of plant development. BMC Biol 10:9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shang JZ, Song PH, Ma B, Qi XW, Zeng QW, Xiang ZH, He NJ (2014) Identification of the mulberry genes involved in ethylene biosynthesis and signaling pathways and the expression of MaERF-B2-1 and MaERF-B2-2 in the response to flooding stress. Funct Integr Genom 14(4):67–777

    Article  Google Scholar 

  • Shangguan L, Han J, Kayesh E, Sun X, Zhang C, Pervaiz T, Wen X, Fang J (2013) Evaluation of genome sequencing quality in selected plant species using expressed sequence tags. PLoS One 8(7):e69890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toulza E, Shin MS, Blanc G, Audic S, Laabir M, Collos Y, Claverie JM, Grzebyk D (2010) Gene expression in proliferating cells of the dinoflagellate Alexandrium catenella (Dinophyceae). Appl Environ Microb 76(13):4521–4529

    Article  CAS  Google Scholar 

  • Trainotti L, Pavanello A, Casadoro G (2005) Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J Exp Bot 56:2037–2046

    Article  CAS  PubMed  Google Scholar 

  • Vandenbussche F, Vaseva I, Vissenberg K, Van Der Straeten D (2012) Ethylene in vegetative development: a tale with a riddle. New Phytol 194(4):895–909

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Tan DM, TakahashiA LiTZ, Harada T (2007) MdERFs, two ethylene-response factors involved in apple fruit ripening. J Exp Bot 58:3743–3748

    Article  CAS  PubMed  Google Scholar 

  • Wongsurawat T, Leelatanawit R, Thamniemdee N, Uawisetwathana U, Karoonuthaisiri N, Menasveta P, Klinbunga S (2010) Identification of testis-relevant genes using in silico analysis from testis ESTs and cDNA microarray in the black tiger shrimp (Penaeus monodon). BMC Mol Biol 11:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP Chen J, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang Z, Guo WW, Kuang H, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan Y (2013) The draft genome of sweet orange (Citrus sinensis). Nature Genet 45(1):59–66

  • Yamane M, Abe D, Yasui S, Yokotani N, Kimata W, Ushijima K, Nakano R, Kubo Y, Inaba A (2007) Differential expression of ethylene biosynthetic genes in climacteric and non-climacteric Chinese pear fruit. Postharvest Biol Technol 44:220–227

    Article  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yoo S, Cho Y, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signaling. Nature 451:789–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhai R, Liu XT, Feng WT, Chen SS, Xu LF, Wang ZG, Zhang JL, Li PM, Ma FW (2014) Different biosynthesis patterns among flavonoid 3-glycosides with distinct effects on accumulation of other flavonoid metabolites in pears (Pyrus bretschneideri Rehd.). PLoS One 9(3):e91945

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Jinggui.

Additional information

Communicated by P. K. Nagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, M., Baoju, W., Xiangpeng, L. et al. Comparison and verification of the genes involved in ethylene biosynthesis and signaling in apple, grape, peach, pear and strawberry. Acta Physiol Plant 38, 44 (2016). https://doi.org/10.1007/s11738-016-2067-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2067-0

Keywords

Navigation