Skip to main content
Log in

Correlation of cultivation time of Panax ginseng with metabolic profiles of nine ginsenosides and mRNA expression of genes encoding major biosynthetic enzymes

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Ginseng (Panax ginseng C. A. Meyer) is one of the most important Chinese medicinal herbs. This medicinal plant produces numerous bioactive substances, including triterpene saponins of the ginsenoside-type. The endogenous levels of all types of ginsenosides largely determine the therapeutic quality of P. ginseng. Here, a field investigation was conducted to compare the changes in ginsenoside composition and mRNA expression levels of some key genes in the biosynthetic pathway of P. ginseng seedlings cultivated for different times (1, 2, 3 or 4 years). After establishing a high performance liquid chromatography method to simultaneously determine nine different ginsenosides, we measured the variations of ginsenoside contents in P. ginseng seedlings collected from our field base in Jilin province, China. The levels of total ginsenosides obviously increased with longer cultivation times and reached peak values in the 4-year seedlings. In light of the changes of ginsenosides composition, protopanaxatriol (PPT)-type ginsenosides displayed a synchronized change with total ones, while the peak point of protopanaxadiol (PPD)-type ginsenoside contents appeared in the 3-year plants. Transcript analyses of squalene synthase (SS), squalene epoxidase (SQE1) and dammarenediol synthase (DS), which are the rate-limiting enzymes in the ginsenoside biosynthetic pathway, showed that the gene expression levels of PgSS and PgSQE1 were highest in the 2-year seedlings, and could indirectly control saponins. While the PgDS gene was highly expressed in 4-year plants, and another important gene pleiotropic drug resistance (PgPDR) has a consistent trend. The further correlation analysis between gene expressions and metabolic changes showed that PgDS transcript level significantly correlated with PPT-type ginsenosides, Rg1, Re, and Rf. PgPDR expression levels positively correlated with total ginsenoside, Rg1, Re, and Rb1 (p < 0.01) and Rg3 negatively correlated with PgDS and PgPDR genes expression (p < 0.01). However, the PgSS gene expression was negatively correlated with Rb1 (p < 0.05). In conclusion, we propose that PPT-type ginsenoside and PPD or dammarenediol-II compounds have a close relationship. Particularly, we highlight recent reports on functional characterization of key genes dedicated to the production of ginsenosides in P. ginseng seedling with cultivated time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PPT:

Protopanaxatriol

PPD:

Protopanaxadiol

PgSS :

Squalene synthase

PgDS :

Dammarenediol synthase

PgSQE1 :

Squalene epoxidase

PgPDR :

Pleiotropic drug resistance

HPLC:

High performance liquid chromatography

qRT-PCR:

Quantitative real-time quantitative polymerase chain reaction

References

  • Bienert MD, Siegmund SE, Drozak A, Trombik T, Bultreys A, Baldwin IT, Boutry M (2012) A pleiotropic drug resistance transporter in Nicotiana tabacum is involved in defense against the herbivore Manduca sexta. Plant J 72:745–757

    Article  PubMed  CAS  Google Scholar 

  • Bonfill M, Casals I, Palazon J, Mallol A, Morales C (2002) Improved high performance liquid chromatographic determination of ginsenosides in Panax ginseng-based pharmaceuticals using a diol column. Biomed Chromatogr 16:68–72

    Article  PubMed  CAS  Google Scholar 

  • Chan PC, Huff J (2012) Hexane fraction of American ginseng suppresses colitis and colon cancer. Cancer Prev Res 5:982 (author reply 983)

    Article  Google Scholar 

  • Cho IH (2012) Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 36:342–353

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cho J, Park W, Lee S, Ahn W, Lee Y (2004) Ginsenoside-Rb1 from Panax ginseng C.A. Meyer activates estrogen receptor-alpha and -beta, independent of ligand binding. J Clin Endocrinol Metab 89:3510–3515

    Article  PubMed  CAS  Google Scholar 

  • Court WE (2000) Ginseng: the history of an insignificant plant. Pharm Hist (Lond) 30:38–44

    CAS  Google Scholar 

  • Crouzet J, Trombik T, Fraysse AS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580:1123–1130

    Article  PubMed  CAS  Google Scholar 

  • Dou DQ, Chen YJ, Liang LH, Pang FG, Shimizu N, Takeda T (2001) Six new dammarane-type triterpene saponins from the leaves of Panax ginseng. Chem Pharm Bull (Tokyo) 49:442–446

    Article  CAS  Google Scholar 

  • Eilenberg H, Shechter I (1987) Regulation of squalene epoxidase activity and comparison of catalytic properties of rat liver and Chinese hamster ovary cell-derived enzymes. J Lipid Res 28:1398–1404

    PubMed  CAS  Google Scholar 

  • Gardiner DM, Stephens AE, Munn AL, Manners JM (2013) An ABC pleiotropic drug resistance transporter of Fusarium graminearum with a role in crown and root diseases of wheat. FEMS Microbiol Lett 348:36–45

    Article  PubMed  CAS  Google Scholar 

  • Godio RP, Fouces R, Martin JF (2007) A squalene epoxidase is involved in biosynthesis of both the antitumor compound clavaric acid and sterols in the basidiomycete H. sublateritium. Chem Biol 14:1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Han JY, Kwon YS, Yang DC, Jung YR, Choi YE (2006) Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 47:1653–1662

    Article  PubMed  CAS  Google Scholar 

  • Han JY, In JG, Kwon YS, Choi YE (2010) Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry 71:36–46

    Article  PubMed  CAS  Google Scholar 

  • Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE (2012) Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 53:1535–1545

    Article  PubMed  CAS  Google Scholar 

  • Haralampidis K, Trojanowska M, Osbourn AE (2002) Biosynthesis of triterpenoid saponins in plants. Adv Biochem Eng Biotechnol 75:31–49

    PubMed  CAS  Google Scholar 

  • Hu W, Liu N, Tian Y, Zhang L (2013) Molecular cloning, expression, purification, and functional characterization of dammarenediol synthase from Panax ginseng. Biomed Res Int 2013:285740

    PubMed Central  PubMed  Google Scholar 

  • Huang C, Qian ZG, Zhong JJ (2013) Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N, N′-dicyclohexylcarbodiimide elicitation. J Biotechnol 165:30–36

    Article  PubMed  CAS  Google Scholar 

  • Joo KM, Lee JH, Jeon HY, Park CW, Hong DK, Jeong HJ, Lee SJ, Lee SY, Lim KM (2010) Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method. J Pharm Biomed Anal 51:278–283

    Article  PubMed  CAS  Google Scholar 

  • Kim YuA, Akoev VR, Elemesov RE (2000) Hyperosmotic hemolysis and antihemolytic activity of the saponin fraction and triterpene glycosides from Panax ginseng C. A. Meyer. Membr Cell Biol 14:237–251

    PubMed  Google Scholar 

  • Kim TD, Han JY, Huh GH, Choi YE (2011) Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in Panax ginseng. Plant Cell Physiol 52:125–137

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee MH, Han JY, Kim HJ, Kim YS, Huh GH, Choi YE (2012) Dammarenediol-II production confers TMV tolerance in transgenic tobacco expressing Panax ginseng dammarenediol-II synthase. Plant Cell Physiol 53:173–182

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kim KT, Kim SS, Hur J, Ha SK, Cho CW, Choi SY (2014) Inhibitory effects of ginseng seed on melanin biosynthesis. Pharmacogn Mag 10:S272–S275

    Article  PubMed Central  PubMed  Google Scholar 

  • Ng TB, Wang H (2001) Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci 68:739–749

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HT, Song GY, Kim JA, Hyun JH, Kang HK, Kim YH (2010) Dammarane-type saponins from the flower buds of Panax ginseng and their effects on human leukemia cells. Bioorg Med Chem Lett 20:309–314

    Article  PubMed  CAS  Google Scholar 

  • Pan YJ, Liu J, Guo XR, Zu YG, Tang ZH (2015) Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus. Protoplasma 252:813–824

    Article  PubMed  CAS  Google Scholar 

  • Qiu F, Ma ZZ, Xu SX, Yao XS, Che CT, Chen YJ (2001) A pair of 24-hydroperoxyl epimeric dammarane saponins from flower-buds of Panax ginseng. J Asian Nat Prod Res 3:235–240

    Article  PubMed  CAS  Google Scholar 

  • Rhim H, Kim H, Lee DY, Oh TH, Nah SY (2002) Ginseng and ginsenoside Rg3, a newly identified active ingredient of ginseng, modulate Ca2+ channel currents in rat sensory neurons. Eur J Pharmacol 436:151–158

    Article  PubMed  CAS  Google Scholar 

  • Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang D (2010a) Gene ontology study of methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify genes involved in secondary metabolic pathway. Genetika 46:932–939

    PubMed  CAS  Google Scholar 

  • Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC (2010b) Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 37:3465–3472

    Article  PubMed  CAS  Google Scholar 

  • Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16(Suppl):S28–S37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shin HR, Kim JY, Yun TK, Morgan G, Vainio H (2000) The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control 11:565–576

    Article  PubMed  CAS  Google Scholar 

  • Sritularak B, Morinaga O, Yuan CS, Shoyama Y, Tanaka H (2009) Quantitative analysis of ginsenosides Rb1, Rg1, and Re in American ginseng berry and flower samples by ELISA using monoclonal antibodies. J Nat Med 63:360–363

    Article  PubMed  CAS  Google Scholar 

  • Tansakul P, Shibuya M, Kushiro T, Ebizuka Y (2006) Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Lett 580:5143–5149

    Article  PubMed  CAS  Google Scholar 

  • Vanhaelen-Fastre RJ, Faes ML, Vanhaelen MH (2000) High-performance thin-layer chromatographic determination of six major ginsenosides in Panax ginseng. J Chromatogr A 868:269–276

    Article  PubMed  CAS  Google Scholar 

  • Wang BX, Zhou QL, Yang M, Wang Y, Cui ZY, Liu YQ, Ikejima T (2003) Hypoglycemic activity of ginseng glycopeptide. Acta Pharmacol Sin 24:50–54

    PubMed  Google Scholar 

  • Xi J, Xu P, Xiang CB (2012) Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana. Plant J 69:782–791

    Article  PubMed  CAS  Google Scholar 

  • Xie JT, Wang CZ, Zhang B, Mehendale SR, Li XL, Sun S, Han AH, Du W, He TC, Yuan CS (2009) In vitro and in vivo anticancer effects of American ginseng berry: exploring representative compounds. Biol Pharm Bull 32:1552–1558

    Article  PubMed  CAS  Google Scholar 

  • Yeo CR, Yang C, Wong TY, Popovich DG (2011) A quantified ginseng (Panax ginseng C.A. Meyer) extract influences lipid acquisition and increases adiponectin expression in 3T3-L1 cells. Molecules 16:477–492

    Article  PubMed  CAS  Google Scholar 

  • Zhai WM, Yuan YS, Zhou YX, Wei L (2001) HPLC fingerprints identification of Panax ginseng C. A. Mey., P. quinquefolin L. and P. notoginseng (Burk. F. H. Chen). Zhongguo Zhong Yao Za Zhi 26:481–482

    PubMed  CAS  Google Scholar 

  • Zhang C, Yu H, Bao Y, An L, Jin F (2001) Purification and characterization of ginsenoside-beta-glucosidase from ginseng. Chem Pharm Bull (Tokyo) 49:795–798

    Article  CAS  Google Scholar 

  • Zhang R, Huang J, Zhu J, Xie X, Tang Q, Chen X, Luo J, Luo Z (2013) Isolation and characterization of a novel PDR-type ABC transporter gene PgPDR3 from Panax ginseng C.A. Meyer induced by methyl jasmonate. Mol Biol Rep 40:6195–6204

    Article  PubMed  CAS  Google Scholar 

  • Zhao JM, Li N, Zhang H, Wu CF, Piao HR, Zhao YQ (2011) Novel dammarane-type sapogenins from Panax ginseng berry and their biological activities. Bioorg Med Chem Lett 21:1027–1031

    Article  PubMed  CAS  Google Scholar 

  • Zhu GY, Li YW, Hau DK, Jiang ZH, Yu ZL, Fong WF (2011) Protopanaxatriol-type ginsenosides from the root of Panax ginseng. J Agric Food Chem 59:200–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Matthew Paul from Rothamsted Research for his constructive and critical comments on this manuscript. This study was financially supported by National Natural Science Foundation of China (31570520).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Hua Tang or Thomas Efferth.

Additional information

Communicated by E. Schleiff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, Y., Zhang, ZH. et al. Correlation of cultivation time of Panax ginseng with metabolic profiles of nine ginsenosides and mRNA expression of genes encoding major biosynthetic enzymes. Acta Physiol Plant 38, 51 (2016). https://doi.org/10.1007/s11738-015-2049-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-2049-7

Keywords

Navigation