Skip to main content
Log in

Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Trehalose, a natural disaccharide, has already been under the attempt of improving stress tolerance in a variety of crop plants. Keeping in view its role in stress tolerance, the effectiveness of seed presoaking with trehalose (25 mM) was tested in radish (Raphanus sativus L.) plants grown under water stress and non-stress conditions. Two radish cultivars namely Manu and 40-day were grown under control (normal watering) and water-deficit (60 % field capacity) conditions. After 45 days of drought stress treatment, a significant suppression was observed in plant fresh and dry biomass, chlorophyll (a and b), relative water content (RWC), rate of photosynthesis (P n ), sub-stomatal CO2 concentration (C i ), and shoot and root K+, Ca2+ and P, while a rise in water-use efficiency (WUE), total soluble sugars (TSS) leaf free proline and glycinebetaine (GB) contents, activities of superoxide dismutase (SOD) and peroxidase (POD) in both radish cultivars under water stress. However, trehalose application caused a significant increase in plant fresh and dry biomass, chlorophyll a content, TSS, P n , WUE, free proline contents as well as the activity of SOD enzyme. Of both radish cultivars, cv. Manu was relatively better in chlorophyll b content, TSS and C i , while cv. 40-day in shoot K+ and P contents. However, pattern of decrease or increase was same for all other tested attributes in both radish cultivars. Overall, seed pre-sowing treatment induced growth improvement of radish plants under water stress that was found to be associated with a significant increase in chlorophyll a content, P n , WUE, TSS, free proline contents as well as the activity of SOD enzyme in both radish cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdullah F, Hareri F, Naaesan M, Ammar MA, ZuherKanbar O (2011) Effect of drought on different physiological characters and yield component in different varieties of syrian durum wheat. J Agric Sci 3:127–133

    Google Scholar 

  • Abrams MD (1990) Adaptations and responses to drought in quercus species of North America. Tree Physiol 7:227–238

    Article  PubMed  Google Scholar 

  • Ahmed HE, Youssef EA, Kord MA, Qaid EA (2013) Trehalose accumulation in wheat plant promotes sucrose and starch biosynthesis. Jordan J Biol Sci 6:143–150

    Article  CAS  Google Scholar 

  • Akram NA, Shahbaz M, Ashraf M (2008) Nutrient acquisition in differentially adapted populations of Cynodon dactylon (L.) Pers. and Cenchrus ciliaris L. under drought stress. Pak J Bot 40:1433–1440

    CAS  Google Scholar 

  • Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2014) Trehalose-induced drought stress tolerance: a comparative study among different Brassica species. Plant Omics J 7:271–283

    Google Scholar 

  • Al-Ghamdi AA (2009) Evaluation of oxidative stress tolerance in two wheat (Triticum aestivum) cultivars in response to drought. Int J Agric Biol 11:7–12

    CAS  Google Scholar 

  • Ali Q, Ashraf M (2011) Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism. J Agron Crop Sci 197:258–271

    Article  CAS  Google Scholar 

  • Ali Q, Ashraf M, Anwar F, Al-Qurainy F (2012) Trehalose-induced changes in seed oil composition and antioxidant potential of maize grown under drought stress. J Am Oil Chem Soc 89:1485–1493

    CAS  Google Scholar 

  • Arnon DT (1949) Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: some recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Akram NA, Al-Qurainy F, Foolad MR (2011) Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Adv Agron 111:249–296

    Article  CAS  Google Scholar 

  • Avonce N, Leyman B, Thevelein J, Iturriaga G (2005) Trehalose metabolism and glucose sensing in plants. Biochem Soc Trans 33:276–279

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhatti MH, Ullah HI, Khan S, Shakoor A (1983) An evaluation of exotic and local cultivars of radish (Raphanus sativus). Pak J Agric Res 4:17–21

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chang B, Yang L, Cong W, Zu Y, Tang Z (2014) The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Plant Physiol Biochem 77:140–148

    Article  CAS  PubMed  Google Scholar 

  • Cortina C, Culianez-Macia FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    Article  CAS  Google Scholar 

  • Delorge I, Janiak M, Carpentier S, Dijck PV (2014) Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Front Plant Sci 5:147

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Bashiti T, Hamamc H, Oktem HA, Yucel M (2005) Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Sci 169:47–54

    Article  CAS  Google Scholar 

  • Eslami A, Mohammadinejad GH, Shamsi H, Touhidinejad E, Sabouri H (2010) Evaluation of drought tolerance on different safflower genotypes in Sirjan. 11th Iranian Crop Science Congress

  • Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. Ricardo A (ed) p 1–5

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99:15898–15903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav 6:1746–1751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goddijn OJM, van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319

    Article  PubMed  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    Article  CAS  Google Scholar 

  • Ilhan S, Ozdemir F, Bor M (2014) Contribution of trehalose biosynthetic pathway to drought stress tolerance of Capparis ovata Desf. Plant Biol 17:402–407

    Article  PubMed  Google Scholar 

  • Jackson ML (1962) Soil Chemical Analysis. Contable Co. Ltd, London

    Google Scholar 

  • Jones MM, Turner NC (1978) Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiol 61:122–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Junjittakarn J, Pimratch S, Jogloy S, Htoon W, Singkham N, Vorasoot N, Toomsan B, Holbrook CC, Patanothai A (2013) Nutrient uptake of peanut genotypes under different water regimes. Int J Plant Prod 7:677–692

    CAS  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mäntylä E, Palva ET, Van Dijck P, Holmström KO (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Uddin MR, Park SU (2013) Glucosinolate accumulation in three important radish (Raphanus sativus) cultivars. Aust J Crop Sci 7:1843–1847

    CAS  Google Scholar 

  • Kosar F, Akram NA, Ashraf M (2015) Exogenously-applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. South Afr J Bot 96:71–77

    Article  CAS  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 235:1007–1018

    Article  Google Scholar 

  • Lopez M, Tejera NA, Liuch C (2009) Validamycin A improves the response of Medicago truncatula plants to salt stress by inducing trehalose accumulation in the root nodules. J Plant Physiol 166:1218–1222

    Article  CAS  PubMed  Google Scholar 

  • Maksimovic I, Kastori R, Petrovic N, Kovacev L, Sklenar P (2003) The effect of water potential on accumulation of some essential elements in sugar beet leaves (Beta vulgaris ssp. Vulgaris). Proc Natl Acad Sci 104:39–50

    CAS  Google Scholar 

  • Nounjan N, Theerakulpisut P (2012) Effects of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant Soil Environ 58:309–315

    Article  CAS  Google Scholar 

  • Pellny TK, Ghannoun O, Conroy JP, Schluepmann H, Smeekens S, Andralojc J et al (2004) Genetic modification of photosynthesis with E. coli genes for trehalose biosynthesis. Plant Biotechnol J 2:71–82

    Article  CAS  PubMed  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectants accumulation in plants. Metabolic Engineer 4:49–56

    Article  CAS  Google Scholar 

  • Sayfzadeh S, Rashidi M (2010) Effect of drought stress on antioxidant enzyme activities and root yield of sugar beet (Beta vulgaris). Am–Eur J Agric Environ Sci 9:223–230

    CAS  Google Scholar 

  • Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci 100:6849–6854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwarz D, Rouphael Y, Colla G, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hort 127:162–171

    Article  CAS  Google Scholar 

  • Shafiq S, Akram NA, Ashraf M, Arshad A (2014) Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants. Acta Physiol Plant 36:1539–1553

    Article  CAS  Google Scholar 

  • Shafiq S, Akram NA, Ashraf M (2015) Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Sci Hort 185:68–75

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Al-Qurainy F, Harris PJC (2012) Salt tolerance in selected vegetable crops. Crit Rev Plant Sci 31:303–320

    Article  CAS  Google Scholar 

  • Sharma R, De Vleesschauwer D, Sharma MK, Ronald PC (2013) Recent advances in dissecting stress regulatory crosstalk in rice. Mol Plant 6:250–260

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ye T, Zhu J, Chan Z (2014) Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. J Exp Bot 65:4119–4131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Iowa State University Press, Ames

    Google Scholar 

  • Torres A, Frias J, Granito M, Vidal-Valverde C (2007) Germinated Cajanus cajan seeds as ingredients in pasta products: chemical, biological and sensory evaluation. Food Chem 101:202–211

    Article  CAS  Google Scholar 

  • Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance—role of glycine betaine. Curr Genom 14:157–165

    Article  CAS  Google Scholar 

  • Wolf B (1982) A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Commun Soil Sci Plant Anal 13:1035–1059

    Article  CAS  Google Scholar 

  • Yang L, Zhao X, Zhu H, Paul M, Zu Y, Tang Z (2014) Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Front Plant Sci 5:570

    Article  PubMed Central  PubMed  Google Scholar 

  • Yemn EW, Wills AJ (1954) The estimation of carbohydrates in plant extract by anthrone. Biochem J 57:508–514

    Article  Google Scholar 

  • Yeo ET, Kwon HB, Han SE, Lee JT, Ryu JC, Byun MO (2000) Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Sacharomyces cerevisae. Mol Cells 10:263–268

    CAS  PubMed  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2003) Plant responses to drought and stress tolerance. Bulg J Plant Physiol S:187–206

  • Zaki HEM, Takahata Y, Yokoi S (2012) Analysis of the morphological and anatomical characteristics of roots in three radish (Raphanus sativus) cultivars that differ in root shape. J Hort Sci Biotechnol 87:172–178

    Google Scholar 

  • Zeid IM (2009) Trehalose as osmoprotectant for maize under salinity-induced stress. Res J Agric Biol Sci 5:613–622

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nudrat Aisha Akram.

Additional information

Communicated by S. Weidner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, N.A., Waseem, M., Ameen, R. et al. Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits. Acta Physiol Plant 38, 3 (2016). https://doi.org/10.1007/s11738-015-2018-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-2018-1

Keywords

Navigation