Skip to main content
Log in

Transcriptome analysis of the germinated seeds identifies low-temperature responsive genes involved in germination process in Ricinus communis

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Castor bean (Ricinus communis L.), an important non-edible oilseed crop, is originated in tropical regions, but is now cultivated in many subtropical areas around the world. Although it has a high economic value and is broadly used in industry, castor bean is very sensitive to low temperature, especially at the germination stage. So far, the knowledge about the mechanisms underlying the environmental effects on seed germination was largely unknown. In this study, the transcriptional profile analysis was performed in germinating castor bean seeds in response to cold stress (20 °C), and a total of 2411 differentially expressed genes (DEGs) were indentified in the seeds germinating at 20 °C in comparison with those germinating at 30 °C (control). The pathway enrichment analysis of DEGs showed that most of over-represented pathways were mainly related to plant secondary metabolisms. Also, most of the DEGs in the enriched pathways, including the 20 phenylpropanoids-related genes, were coordinately up-regulated in the seeds germinating at 20 °C, indicating that they might be key candidate genes or regulators involved in seed germination under chilling conditions. Thus, these results would give us a guide to promote the germination of crop seeds sowed in spring under low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badowiec A, Weidner S (2014) Proteomic changes in the roots of germinating Phaseolus vulgaris seeds in response to chilling stress and post-stress recovery. J Plant Physiol 171:389–398

    Article  CAS  PubMed  Google Scholar 

  • Campos FAP, Nogueira FCS, Cardoso KC, Costa GCL, Del Bem LEV, Domont GB, Da Silva MJ, Moreira RC, Soares AA, Juca TL (2010) Proteome analysis of castor bean seeds. Pure Appl Chem 82:259–267

    Article  CAS  Google Scholar 

  • Catusse J, Job C, Job D (2008) Transcriptome- and proteome-wide analyses of seed germination. CR Biol 331:815–822

    Article  CAS  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotech 28:951–956

    Article  CAS  Google Scholar 

  • Cheng LB, Gao X, Li SY, Shi MJ, Javeed H, Jing XM, Yang GX, He GY (2010) Proteomic analysis of soybean Glycine max (L.) Meer. seeds during imbibition at chilling temperature. Mol Breed 26:1–17

    Article  CAS  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008) Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13

    Article  CAS  PubMed  Google Scholar 

  • Houston NL, Hajduch M, Thelen JJ (2009) Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. Plant Physiol 151:857–868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunt L, Holdsworth MJ, Gray JE (2007) Nicotinamidase activity is important for germination. Plant J 51:341–351

    Article  CAS  PubMed  Google Scholar 

  • Jiang XJ, Wen XD (2008) The effect of temperature on the germination rates in castor bean. Seed 27:67–69

    Google Scholar 

  • Lima Da Silva N, Maciel M, Batistella C, Filho R (2006) Optimization of biodiesel production from castor oil. Appl Biochem Biotechnol 130:405–414

    Article  Google Scholar 

  • Maltman DJ, Simon WJ, Wheeler CH, Dunn MJ, Wait R, Slabas AR (2002) Proteomic analysis of the endoplasmic reticulum from developing and germinating seed of castor (Ricinus communis). Electrophoresis 23:626–639

    Article  CAS  PubMed  Google Scholar 

  • Maltman DJ, Gadd SM, Simon WJ, Slabas AR (2007) Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum. Proteomics 7:1513–1528

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nogueira FC, Palmisano G, Schwammle V, Campos FA, Larsen MR, Domont GB, Roepstorff P (2012a) Performance of isobaric and isotopic labeling in quantitative plant proteomics. J Proteome Res 11:3046–3052

    Article  CAS  PubMed  Google Scholar 

  • Nogueira FC, Palmisano G, Soares EL, Shah M, Soares AA, Roepstorff P, Campos FA, Domont GB (2012b) Proteomic profile of the nucellus of castor bean (Ricinus communis L.) seeds during development. J Proteomics 75:1933–1939

    Article  CAS  PubMed  Google Scholar 

  • Nogueira FCS, Palmisano G, Schwämmle V, Soares EL, Soares AA, Roepstorff P, Domont GB, Campos FAP (2013) Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.). J Proteome Res 12:5012–5024

    Article  CAS  PubMed  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination—Still a mystery. Plant Sci 179:574–581

    Article  CAS  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091

    Article  CAS  PubMed  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Reigosa MJ, Malvido-Pazos E (2007) Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J Chem Ecol 33:1456–1466

    Article  CAS  PubMed  Google Scholar 

  • Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics (Oxford) 19:368–375

    Article  CAS  Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scholz V, da Silva JN (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenerg 32:95–100

    Article  CAS  Google Scholar 

  • Tan L, Chen S, Wang T, Dai S (2013) Proteomic insights into seed germination in response to environmental factors. Proteomics 13:1850–1870

    Article  CAS  PubMed  Google Scholar 

  • Thakur S, Jha S, Chattoo BB (2011) CastorDB: a comprehensive knowledge base for J. BMC Res Notes 4:356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Weitbrecht K, Muller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31271765, 31371664).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingchu Yan or Wenhui Wei.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Communicated by A. Gniazdowska-Piekarska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2015_1994_MOESM1_ESM.ppt

Supplementary material 1 (PPT 2162 kb) Figure S1. The castor bean seeds used in this study. (A) The seeds germinated at 30 °C or 20 °C. (B) The un-germinated (up row) or germinated seeds of castor bean (down row). Figure S2. Length distribution of all-unigenes in castor bean transcriptome.

Supplementary material 2 (XLSX 7545 kb)

Supplementary material 3 (XLSX 2296 kb)

Supplementary material 4 (XLSX 10 kb)

Supplementary material 5 (XLSX 496 kb)

Supplementary material 6 (XLSX 11 kb)

Supplementary material 7 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, L., Yan, X. et al. Transcriptome analysis of the germinated seeds identifies low-temperature responsive genes involved in germination process in Ricinus communis . Acta Physiol Plant 38, 6 (2016). https://doi.org/10.1007/s11738-015-1994-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1994-5

Keywords

Navigation