Skip to main content
Log in

Screening and transcriptome analysis of water deficiency tolerant germplasms in peanut (Arachis hypogaea)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Drought is one of the main limiting factors for peanut yield worldwide. However, the underlying genetic and molecular mechanisms remain unclear. In this study, we identified several water deficiency tolerant peanut germplasms based on physiological properties in the seedling stage. One of the germplasms was further characterized by transcriptome sequencing of samples that had been untreated or treated with PEG 6000 at three different times. A total of 370,145 non-redundant transcripts and 141,289 unigenes were obtained, and differentially expressed transcripts were identified among samples. Based on functional annotation, transcripts involved in drought response pathways were selected for qPCR analysis. Similar patterns but different levels of gene expression were found between drought-tolerant and drought-sensitive germplasms. These findings provide useful insights into drought tolerance of peanut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chen X, Zhu W, Azam S, Li H, Zhu F, Hong Y, Liu H, Zhang E, Wu H, Yu S et al (2013) Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol J 11:115–127

    Article  CAS  PubMed  Google Scholar 

  • Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, Yang Z, He Y, Liang X, Yu S (2011) Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 6:e27530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collino D, Dardanelli J, Sereno R, Racca R (2001) Physiological responses of argentine peanut varieties to water stress: light interception, radiation use efficiency and partitioning of assimilates. Field Crop Res 70:177–184

    Article  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Devaiah KM, Bali G, Athmaram TN, Basha MS (2007) Identification of two new genes from drought tolerant peanut up-regulated in response to drought. Plant Growth Regul 52:249–258

    Article  CAS  Google Scholar 

  • Dramé KN, Clavel D, Repellin A, Passaquet C, Zuily-Fodil Y (2007) Water deficit induces variation in expression of stress-responsive genes in two peanut (Arachis hypogaea L.) cultivars with different tolerance to drought. Plant Physiol Bioch 45:236–243

    Article  Google Scholar 

  • Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MVC, Narasu ML, Hoisington DA et al (2011) Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30:757–772

    Article  PubMed Central  PubMed  Google Scholar 

  • Govind G, Vokkaliga ThammeGowda H, Jayaker Kalaiarasi P, Iyer DR, Muthappa SK, Nese S, Makarla UK (2009) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genomics 281:591–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guimaraes PM, Brasileiro AC, Morgante CV, Martins AC, Pappas G, Silva OB Jr, Togawa R, Leal-Bertioli SC, Araujo AC, Moretzsohn MC et al (2012) Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genom 13:387

    Article  CAS  Google Scholar 

  • Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom G, Patanothai A (2013) Drought tolerance mechanisms for yield responses to pre-flowering drought stress of peanut genotypes with different drought tolerant levels. Field Crop Res 144:34–42

    Article  Google Scholar 

  • Li X-Y, Liu X, Yao Y, Li Y-H, Liu S, He C-Y, Li J-M, Lin Y-Y, Li L (2013) Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content. Int J Mol Sci 14:12827–12842

    Article  PubMed Central  PubMed  Google Scholar 

  • Li X, Lu J, Liu S, Liu X, Lin Y, Li L (2014) Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnol 14:58

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu X, Hong L, Li X-Y, Yao Y, Hu B, Li L (2011) Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotech Biochem 75:443–450

    Article  CAS  Google Scholar 

  • Liu X, Liu S, Wu J, Zhang B, Li X, Yan Y, Li L (2013) Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem 70:354–359

    Article  CAS  PubMed  Google Scholar 

  • Manjulatha M, Sreevathsa R, Kumar AM, Sudhakar C, Prasad TG, Tuteja N, Udayakumar M (2014) Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Mol Biotechnol 56:111–125

    Article  CAS  PubMed  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa Y, Sato H, Uchino M, Takano K (2006) Purification, characterization and cloning of phospholipase D from peanut seeds. Protein J 25:212–223

    Article  CAS  PubMed  Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimaraes P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B et al (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651

    Article  CAS  PubMed  Google Scholar 

  • Pandurangaiah M, Lokanadha Rao G, Sudhakarbabu O, Nareshkumar A, Kiranmai K, Lokesh U, Thapa G, Sudhakar C (2014) Overexpression of horsegram (Macrotyloma uniflorum Lam. Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. Mol Biotechnol 56:758–769

    Article  CAS  PubMed  Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ et al (2010) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132

    Article  PubMed Central  PubMed  Google Scholar 

  • Reddy SK, Liu S, Rudd JC, Xue Q, Payton P, Finlayson SA, Mahan J, Akhunova A, Holalu SV, Lu N (2014) Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112. J Plant Physiol 171:1289–1298

    Article  CAS  PubMed  Google Scholar 

  • Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR (2014) Heterologous expression of the AtDREB1A Gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One 9:e110507

    Article  PubMed Central  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Wan L, Wu Y, Huang J, Dai X, Lei Y, Yan L, Jiang H, Zhang J, Varshney RK, Liao B (2014) Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Funct Integr Genomics 14:467–477

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Matand K, Wu H, Li B, Li Y, Zhang X, He Z, Qian J, Liu X, Conley S et al (2013) De novo next-generation sequencing, assembling and annotation of Arachis hypogaea L. Spanish botanical type whole plant transcriptome. Theor Appl Genet 126:1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Zhao C, Hou L, Li A, Zhao S, Bi Y, An J, Zhao Y, Wan S, Wang X (2013) Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genom 14:517

    Article  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin D, Wang Y, Zhang X, Li H, Lu X, Zhang J, Zhang W, Chen S (2013) De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways. PLoS One 8:e73767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genom 13:90

    Article  CAS  Google Scholar 

  • Zhang W, Chu Y, Ding C, Zhang B, Huang Q, Hu Z, Huang R, Tian Y, Su X (2014) Transcriptome sequencing of transgenic poplar (Populus × euramericana ‘Guariento’) expressing multiple resistance genes. BMC Genet 15(Suppl 1):S7

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao CZ, Xia H, Frazier TP, Yao YY, Bi YP, Li AQ, Li MJ, Li CS, Zhang BH, Wang XJ (2010) Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 10:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu W, Chen X, Li H, Zhu F, Hong Y, Varshney RK, Liang X (2014) Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Mol Biol 85:395–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by SCX(12)5039 (The Self-directed Innovation Fund of Agricultural Science and Technology in Jiangsu Province, China). Zhiguo E is responsible for qPCR, and Xiaojun Zhang helped with data arrangement.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Shen or Zhide Chen.

Additional information

Communicated by M. Hajduch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2015_1840_MOESM1_ESM.tif

Supplementary material 1 (TIFF 51 kb) Supplemental Fig. 1: Relative seedling heights after 7 days treatment with water (CK) and PEG 6000 of 50 peanut germplasms

11738_2015_1840_MOESM2_ESM.xlsx

Supplementary material 2 (XLSX 10 kb) Supplemental Table 1: Names and origins of 50 peanut germplasms for tolerance screening

11738_2015_1840_MOESM3_ESM.xlsx

Supplementary material 3 (XLSX 14930 kb) Supplemental Table 2: Detailed unigene information, including length and various annotations compared in different databases

11738_2015_1840_MOESM4_ESM.xlsx

Supplementary material 4 (XLSX 1368 kb) Supplemental Table 3: KEGG pathway anchoring of unigenes, including pathway name, pathway type, related gene number, and detailed gene ID list

11738_2015_1840_MOESM5_ESM.xlsx

Supplementary material 5 (XLSX 33 kb) Supplemental Table 4: Gradually increased (Sheet 1) or decreased (Sheet 2) transcripts after drought treatment

Supplementary material 6 (XLSX 15 kb) Supplemental Table 5: Length and expression patterns of drought-related unigenes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Zhiguo, E., Zhang, X. et al. Screening and transcriptome analysis of water deficiency tolerant germplasms in peanut (Arachis hypogaea). Acta Physiol Plant 37, 103 (2015). https://doi.org/10.1007/s11738-015-1840-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1840-9

Keywords

Navigation