Skip to main content
Log in

Chromosome mapping of four novel mutants in bread wheat (Triticum aestivum L.)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Induced mutants constitute an important resource for mapping and cloning of genes for specific traits. Five loci underlying four induced mutants in wheat were mapped using phenotypic data and simple sequence repeat (SSR) genotyping data collected on F2 and F3 populations. The four mutant traits included the following: (1) axillary branching, (2) early leaf senescence, (3) reduced plant height and (4) reduced number of nodes. The ‘axillary branching’ locus (Axb) was mapped near Xcfd152 at a distance of 7.5 cM on chromosome 3DS. The ‘early leaf senescence’ gene (els) was mapped on 2DL at a distance of 28.6 cM from the nearest marker Xgwm539. A wheat expressed sequence tag (EST) TaSAG1 representing a candidate for els gene for early leaf senescence was also identified. The ‘reduced plant height’ locus was mapped on chromosome 2BL close to Xwmc361, which is tightly linked with Xwmc317 associated with a ‘GA-responsive dwarfing gene’ Rht4; hence, the ‘dwarf mutant-3’ used in the present study may be a phenotypic manifestation of an another allele of the gene Rht4. The ‘reduced number of node’ mutant was mapped on two loci (rnd1 and rnd2) on chromosomes 2DS and 5AL. The marker locus Xgwm261-2D linked with rnd1 was earlier reported to be closely associated with Rht8 gene, suggesting that rnd1 may perhaps represent a mutation in Rht8 gene; the second locus rnd2 on 5AL represents a novel gene. These results may prove useful in explaining the genetics of four mutant traits and may later also facilitate cloning the genes for these traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal P, Kumar S, Mir RR, Balyan HS, Gupta PK (2013) Some ENU induced mutations: a resource for functional genomics in bread wheat. Plant Mutat Rep 3:9–17

    Google Scholar 

  • Anderson JA, Matthiesen L, Hegstad J (2004) Resistance to an imidazolinone herbicide is conferred by a gene on chromosome 6DL in the wheat line cv. 9804. Weed Sci 52:83–90

    Article  CAS  Google Scholar 

  • Ansari MJ, Kumar R, Singh K, Dhaliwal HS (2012) Characterization and molecular mapping of EMS-induced brittle culm mutants of diploid wheat (Triticum monococcum L.). Euphytica 186:165–176

    Article  Google Scholar 

  • Ansari MJ, Al-Ghamdi A, Usmani S, Kumar R, Nuru A, Singh K, Dhaliwal HS (2013a) Characterization and gene mapping of a brittle culm mutant of diploid wheat (Triticum monococcum L.) with irregular xylem vessels development. Acta Physiol Plant 35:2407–2419

    Article  CAS  Google Scholar 

  • Ansari MJ, Al-Ghamdi A, Kumar R, Usmani S, Al-attal Y, Adgaba N, Singh K, Dhaliwal HS (2013b) Characterization and gene mapping of a chlorophyll-deficient mutant clm1 of Triticum monococcum L. Biol Plant 57:442–448

    Article  CAS  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Balyan HS, Lohia RS (1996) Pleiotropic effects of Rht dwarfing genes on grain yield and its component traits in wheat under rainfed environment. Indian J Genet 58:167–176

    Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Chen L, Phillips AL, Condon AG, Parry MAJ, Hu Y-G (2013) GA- responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat. PLoS One 8:e62285. doi:10.1371/journal.pone.0062285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dev G, Sagger S, Singh R, Sidhu BS (1980) Root distribution patterns of some wheat varieties in arid brown soil under rainfed conditions. J Nuclear Agri Biol 9:89–90

    Google Scholar 

  • Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot. doi:10.1093/jxb/ert477

    PubMed  Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Kellogg EA (2004) Genetic control of branching in foxtail millet. Proc Natl Acad Sci USA 101:9045–9050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111:423–430

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Simons KJ, Zhang Z, Gill BS (2005) The wheat super domestication gene Q. Wheat Inf Serv 100:129–148

    Google Scholar 

  • Feng GN, Zhang CQ, Tang MY, Zhang GY, Xu CW, Gu MH, Liu QQ (2013a) Genetic analysis and gene cloning of a triangular hull 1 (tri1) mutant in rice (Oryza sativa L.). Chinese Sci Bull 58:2984–2991

    Article  CAS  Google Scholar 

  • Feng GN, Zhang CQ, Zhao DS, Zhu KZ, Tu HZ, Xu CW, Liu QU (2013b) Fine mapping and cloning of leafy head mutant gene pla1-5 in rice. Rice Sci 20:329–335

    Article  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Nat Acad Sci USA 95:1971–1974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gasperini G, Greenland A, Hedden P, Dreos R, Harwood V, Griffiths S (2012) Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J Exp Bot 63:4419–4436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MFO, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson A (1947) Mutations in agricultural plants. Hereditas 33:1–100

    Article  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  Google Scholar 

  • Kajimura T, Mizuno N, Takumi S (2010) Utility of leaf senescence-associated gene homologs as developmental markers in common wheat. Plant Physiol Biochem 48:851–859

    Article  CAS  PubMed  Google Scholar 

  • Korzun V, Röder M, Worland AJ, Börner A (1997) Intra chromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrn1) in wheat by using RFLP and microsatellite markers. Plant Breed 116:227–232

    Article  Google Scholar 

  • Korzun V, Roder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  • Kumar S, Balyan HS, Gupta PK (2012) Comparative DNA sequence analysis involving wheat, brachypodium and rice genomes using mapped wheat ESTs. Triticeae Genome Genet 3:25–37

    Google Scholar 

  • Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285–294

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lee RH, Wang CH, Huang LT, Chen SC (2001) Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot 52:1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Li N, Jia J, Xia C, Liu X, Kong X (2013) Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat. Breeding Sci 63:169–175

    Article  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP. Whitehead Institute for Biomedical Research, Cambridge

    Google Scholar 

  • Maluszynski M, Szarejko I, Maluszynska J (2001) Induced mutations in wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book. Lavoisier Publishing, London, pp 939–977

    Google Scholar 

  • Mascher M, Jost M, Kuon J-E, Himmelbach A, Aßfalg A, Beier S, Scholz U, Graner A, Stein N (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78

    Article  PubMed Central  PubMed  Google Scholar 

  • Mathews KL, Chapman SC, Trethowan R, Singh RP, Crossa J, Pfieffer W, van Ginkel M, DeLacy I (2006) Global adaptation of spring bread wheat and durum wheat lines near isogenic for major reduced height genes. Crop Sci 46:603–613

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325. doi:10.1093/nar/8.19.4321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piao R, Jiang W, Ham TH, Choi MS, Qiao Y, Chu SH, Park JH, Woo MO, Jin Z, An G, Lee J, Koh HJ (2009) Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet 119:1497–1506

    Article  CAS  PubMed  Google Scholar 

  • Pozzi C, di Pietro D, Halas G, Roig C, Salamini F (2003) Integration of a barley (Hordeum vulgare) molecular linkage map with the position of genetic loci hosting 29 developmental mutants. Heredity 90:390–396

    Article  CAS  PubMed  Google Scholar 

  • Prasad G, Tripathi DK (1985) Induced multinoded mutants in barley. Barley Genet Newsletter 15:10–12

    Google Scholar 

  • Richards RA (1992) The effect of dwarfing genes in spring wheat in dry environments. 2. Growth and water use efficiency. Aus J Agr Res 43:529–539

    Article  Google Scholar 

  • Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote T, Fish LJ, Snape JW, Moore G (1999) Induction and characterization of Ph1 wheat mutants. Genetics 153:1909–1918

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salse J, Piegu B, Cooke R, Delseny M (2002) Synteny between Arabidopsis thaliana and rice at the genome level: a tool to identify conservation in the ongoing rice genome sequencing project. Nucleic Acids Res 30:2316–2328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plain view, New York

    Google Scholar 

  • Scholz F, Lehmann CO (1961) Die Gaterslebener mutanten der saatgerste in beziehung zur formenmannigfaltigkeit der art Hordeum vulgare L. III. Die Kulturpflanze 9:230–272

    Article  Google Scholar 

  • Sheng L, Jin WX, Neng SG, Qing TS, Song HP (2013) Map based cloning of a ‘Zebra’ leaf mutant gene zl2 in rice. Chinese J Rice Sci 27:231–239

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tegelstrom H (1992) Detection of mitochondrial DNA fragments. In: Hoelzel AR (ed) Molecular Genetic Analysis of Populations: A Practical Approach. IRL Press, Oxford, pp 89–114

    Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Walker GW, Dietrich J, Miller R, Kasha K (1963) Recent barley mutants and their linkages. II. Genetic data for further mutants. Can J Genet Cytol 5:200–219

    Article  Google Scholar 

  • Wu HB, Wang B, Chen Y, Liu YG, Chen L (2013) Characterization and fine mapping of the rice premature senescence mutant Ospse1. Theor Appl Genet 126:1897–1907

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to the Head, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India for providing facilities to carry out this study. We also acknowledge the use of bioinformatics facilities available in the BIF laboratory supported by the Department of Biotechnology, New Delhi. Primer sequences for 9 SSRs provided by Marion Röder (Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany) and for 52 SSRs, provided by M. Ganal (Trait Genetics GmbH, Gatersleben, Germany) are gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpendra Kumar Gupta.

Additional information

Communicated by M. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, P., Jaiswal, V., Kumar, S. et al. Chromosome mapping of four novel mutants in bread wheat (Triticum aestivum L.). Acta Physiol Plant 37, 66 (2015). https://doi.org/10.1007/s11738-015-1775-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1775-1

Keywords

Navigation