Skip to main content
Log in

Sulfur stress-induced antioxidative responses in leaves of Triticum aestivum L.

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Antioxidative responses were investigated in leaves of wheat (Triticum aestivum L.) grown at varying S levels ranging from deficiency to excess (1, 2, 4, 6 and 8 mM S). Optimum yield was observed in plants supplied with 4 mM S. Wheat responded to S deficiency and excess supply by decreasing growth of root and shoot. Chlorosis in young leaves was observed after 15 days of deficient S supply. The biomass and concentration of photoassimilatory pigments decreased in plants grown at 1, 2, 6 and 8 mM S supply. The concentration of thiobarbituric acid reactive substances (TBARS), cysteine, nonprotein thiol and hydrogen peroxide (H2O2) increased in plants grown under S stress. Accumulation of TBARS and H2O2 in leaves indicated oxidative damage in S-deficient and S-excess plants. Deficient and excess levels of S showed an increase in the activities of antioxidative enzymes superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

AsA:

Ascorbate

CAT:

Catalase

Cys:

Cysteine

GR:

Glutathione reductase

H2O2 :

Hydrogen peroxide

NPT:

Nonprotein thiol

\(^{ \cdot } {\text{OH}}\) :

Hydroxyl radical

1O2 :

Singlet oxygen

\({\text{O}}_{ 2}^{ \cdot }\) :

Superoxide radical

POD:

Peroxidase

ROS:

Reactive oxygen species

S:

Sulfur

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

References

  • Adiputra IGK, Andreson JW (1995) Effect of sulphur nutrition on redistribution of sulphur in vegetative barley. Physiol Plant 95:643–650

    Article  CAS  Google Scholar 

  • Alscher R (1989) Biosynthesis and antioxidants function of glutathione in plants. Plant Physiol 77:457–464

    Article  CAS  Google Scholar 

  • Arora SK, Luthra YP (1971) Relationship between sulphur content of leaf with methionine, cysteine and cystine contents in the seeds of Phaseolus aureus L. as affected by S, P and N application. Plant Soil 34:91–96

    Article  CAS  Google Scholar 

  • Astolfi S, Zuchi S (2012) Adequate S supply protects barley plants from adverse effects of salinity stress by increasing thiol contents. Acta Physiol Plant 35:175–181

    Article  Google Scholar 

  • Bartosz G (1997) Oxidative stress and superoxide dismutases. Plant Physiol 101:7–12

    Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gel. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Blake-Kalff MMA, Harrison KR, Hawkesford MJ, Zhao FJ, McGrath SP (1998) Allocation of sulfur within oilseed rape (Brassica napus L.) leaves in response to sulfur deficiency. Physiol Plant 118:1337–1344

    Article  CAS  Google Scholar 

  • Bowler C, Van Montago M, Inze D (1992) Superoxide dismutases in plants. Ann Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brennan RF, Bell RW, Raphael C, Eslick H (2010) Sources of sulphur for dry matter, seed yield, and oil concentration of canola grown in sulphur deficient soils of south-western Australia. J Plant Nutr 33:1180–1194

    Article  CAS  Google Scholar 

  • Buettner GR, Jurkiewicz BA (1996) Chemistry and biochemistry of ascorbic acid. In: Candens E, Packer L (eds) Hand book of antioxidants. Dekker, New York, pp 91–115

    Google Scholar 

  • Burke JJ, Holloway P, Dalling MJ (1986) The effect of sulfur deficiency on the organization and photosynthetic capability of wheat leaves. J Plant Physiol 125:371–375

    Article  CAS  Google Scholar 

  • Cakmak I (1994) Activity of ascorbate dependent H2O2—scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium—deficient leaves. J Exp Bot 45:1259–1266

    Article  CAS  Google Scholar 

  • Chesnin L, Yien CH (1951) Turbidimetric determination of available sulphates. Soil Sci Soc Am Pro 15:528–530

    Article  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF, Osswald W (1994) Mechanism of oxygen activation during plant stress. Proc R Soc Edinb 102B:131–154

    Google Scholar 

  • Euler H, Josephson K (1927) Über Katalase I. Leibigs Ann 452:158–187

    Article  Google Scholar 

  • Foyer CH (1997) Oxygen metabolism and electron transport in photosynthesis. In: Scandalios J (ed) The molecular biology of free radical scavenging systems. Cold Spring Harbor Laboratory Press, New York, pp 587–621

    Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandis M, Kunert KJ (1995) Overexpression of glutathione reductase but not glutathione synthase, leads to increase in antioxidants capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Guwy AJ, Martin SR, Hawkes FR, Hawskes DL (1999) Catalase activity measurement in suspended aerobic biomass and soil samples. Enzym Microbiol Technol 25:669–676

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon press, Oxford

    Google Scholar 

  • Hawkesford MJ, Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environ 29:302–395

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Heyno E, Mary V, Schopfer P, Krieger-Liszkay A (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234:35–45

    Article  CAS  PubMed  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signaling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  CAS  PubMed  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and paraquat. Biochem 210:899–903

    CAS  Google Scholar 

  • Leustek T, Saito K (1999) Sulphate transport and assimilation in plants. Plant Physiol 120:637–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer L, Douce R (eds) Methods in enzymology. Academic Press Inc., New York, pp 350–382

    Google Scholar 

  • Luck M (1963) Peroxidase. In: Bergmeyer HV (ed) Methods of enzymic analysis. Academic Press Inc., New York, pp 895–897

    Google Scholar 

  • Lunde C, Zygaldo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A (2008) Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plant 134:508–521

    Article  CAS  PubMed  Google Scholar 

  • Madamanchi NR, Alscher RG (1991) Metabolic bases for differences in sensitivity of two pea cultivars to sulphur dioxide. Plant Physiol 97:88–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madamanchi NR, Anderson JV, Alscher RG, Carmer CL, Hess JL (1992) Purification of multiple forms of glutathione reductase from pea (Pisum sativum L.) seedlings and enzyme levels in ozone fumigated pea leaves. Plant Physiol 100:138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Melhorn H, Lelandis M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrates for plant peroxides. FEBS Lett 378:203–206

    Article  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nikifrova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650

    Article  Google Scholar 

  • Padh H (1990) Cellular functions of ascorbic acid. Biochem Cell Biol 68:1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Pandey N, Archana (2013) Antioxidant responses and water status in Brassica seedlings subjected to boron stress. Acta Physiol Plant 35:697–706

    Article  CAS  Google Scholar 

  • Pandey N, Pathak GC, Pandey DK, Pandey R (2009) Heavy metals Co, Ni, Cu, Zn and Cd, produce oxidative damage and evoke differential antioxidant responses in spinach. Braz J Plant Physiol 21:103–111

    Article  Google Scholar 

  • Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. PNAS 14:5535–5540

    Article  Google Scholar 

  • Rennenberg H (1982) Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21:2771–2781

    Article  CAS  Google Scholar 

  • Resurreccion AP, Makino A, Bennet J, Mae T (2002) Effect of light intensity on the growth and photosynthesis of rice under different sulfur concentration. Soil Sci Plant Nutr 48:71–77

    Article  CAS  Google Scholar 

  • Rizhsky L, Hallak-Herr E, Breusegem FV, Rachmilevitch S, Barr JE, Rodermal S, Inze D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  Google Scholar 

  • Sutherland MW (1991) The generation of oxygen radicals during host plant responses to infection. Physiol Mol Plant Pathol 39:79–93

    Article  CAS  Google Scholar 

  • Tanaka K, Sugahara K (1980) Role of superoxide dismutase in the defense against SO2 toxicity and induction of superoxide dismutase with SO2 fumigation. Res Rep Natl Inst Environ Studies 11:155–164

    CAS  Google Scholar 

  • Tewari RK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidants responses-influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2010) Morphology and oxidative physiology of sulphur-deficient mulberry plants. Environ Exp Bot 68:301–308

    Article  CAS  Google Scholar 

  • Willekins H, Chamnongpal S, Davey M, Schrauder M, Langebartels C (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16:4806–4816

    Article  Google Scholar 

  • Withers PJ, Tytherleigh ARJ, Donnell FMO (1995) Effect of sulphur fertilizers on the grain yield and sulphur content of cereals. J Agric Sci 125:317–324

    Article  CAS  Google Scholar 

  • Zhao Y, Xiao X, Bi D, Hu F (2008) Effects of sulphur fertilization on soybean root and leaf traits, and soil microbial activity. J Plant Nutr 31:473–483

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Pandey.

Additional information

Communicated by G. Bartosz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, N., Pandey, N. Sulfur stress-induced antioxidative responses in leaves of Triticum aestivum L.. Acta Physiol Plant 36, 2079–2089 (2014). https://doi.org/10.1007/s11738-014-1585-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1585-x

Keywords

Navigation