Skip to main content
Log in

Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The present study aimed to uncover the interconnected mechanisms underlying salt tolerance of Atriplex nummularia, a potential fodder plant for saline agriculture. The plants were grown in gravel/hydroponic quick check system in the greenhouse and irrigated with various seawater salinities (sws) (0, 25, 50, 100 and 150 %). Raising NaCl salinity stimulated the plant growth, which was highest at 50 % sws. Growth stimulation was mainly due to positive water balance, bestowed by plant ability to adjust osmotically and to minimize water loss via transpiration. Osmotic adjustment was mainly achieved by substantial accumulation of Na+ and Cl. This was associated concurrently with sharp decrease in K+ and NO3 concentrations, resulting into ion imbalance. However, the plants were able to maintain adequate ion ratios in their roots and juvenile leaves, where the metabolic activities are expected to be highest. Salt-induced reduction in transpiration rates was coincided with progressive decrease in net photosynthesis (P N). This reduction was proportionally higher than those observed for photosynthesis, leading to improve photosynthetic water use efficiency (PWUE). Reduction in NO3 concentration may contribute to the overall reduction in total soluble protein (TSP), total N content and hence net photosynthetic rates. However, photosynthetic nitrogen use efficiency (PNUE) and nitrogen use efficiency (NUE) were transiently increased, peaked at moderate salinities, indicating that the plants could effectively regulate nitrogen utilization for C-assimilation machinery. Thus, plant’s ability to maintain carbon and nitrogen assimilation in equilibrium through well-coordinated regulatory mechanisms could be considered as a key determinant for salt tolerance in A. nummularia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C i/C a :

Ratio of internal to external CO2 concentration

E :

Transpiration rate

La:

Adult leaves

Lj:

Juvenile leaves

NUE:

Nitrogen-use efficiency

P N :

Net photosynthetic rate

PNUE:

Photosynthetic nitrogen use efficiency

Pro:

Proline

PWUE:

Photosynthetic water use efficiency

R s :

Stomatal resistance

SAKNa :

Selective absorption of K+ over Na+

STKNa :

Selective transport of K+ over Na+

sws:

Seawater salinity

TAA:

Total amino acids

TSC:

Total soluble carbohydrates

TSP:

Total soluble protein

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  PubMed  CAS  Google Scholar 

  • Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K (2009) Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol Plant 53:243–248

    Article  CAS  Google Scholar 

  • Al-Rawahy SA, Stroehlein JL, Pessarakli M (1992) Dry matter yield and nitrogen-15, Na+, Cl and K+ content of tomatoes under sodium chloride stress. J Plant Nutr 15:341–358

    Article  CAS  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad MA (2007) Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bajji M, Kinet J, Lutts S (1998) Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Sci 137:131–142

    Article  CAS  Google Scholar 

  • Bajji M, Lutts S, Kient JM (2001) Water deficit effects on solute contribution to osmotic adjustment as a function of leaf aging in three durum wheat (Triticum durum Defs.) cultivars performing differently in arid conditions. Plant Sci 160:669–681

    Article  PubMed  CAS  Google Scholar 

  • Bayuelo-Jimenez JS, Debouck DG, Lynch JP (2003) Growth, gas exchange, water relations and ion composition of Phaseolus species grown under saline conditions. Field Crop Res 80:207–498

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR, Läuchli A, Polito VS (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells: a primary response to stress. Plant Physiol 79:207–211

    Article  PubMed  CAS  Google Scholar 

  • De Villiers AJ, Von Teichman I, Van Rooyen MW, Theron GK (1996) Salinity induced changes in anatomy, stomatal counts and photosynthetic rate of Atriplex semibaccata. S Afr J Bot 62:270–276

    Google Scholar 

  • Debez A, Saadaoui D, Ramani B, Ouerghi Z, Koyro H-W, Huchzermeyer B, Abdelly C (2006) Leaf H+-ATPase activity and photosynthetic capacity of Cakile maritima under increasing salinity. Environ Exp Bot 57:285–295

    Article  CAS  Google Scholar 

  • Dunn GM, Neales TF (1993) Are the effect of salinity on growth and leaf gas-exchange related? Photosynthetica 29:33–42

    CAS  Google Scholar 

  • Einarsson S, Josefsson B, Lagerkvist S (1983) Determination of amino acids with 9-fluorenylmethylchloroformate and reversed-phase high-performance liquid chromatography. J Chromatogr 282:609–618

    Article  CAS  Google Scholar 

  • Eisa S, Hussin S, Geissler N, Koyro HW (2012) Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Aust J Crop Sci 6:357–368

    CAS  Google Scholar 

  • El Mourid M, Malki M, Sbeita A, Chiriyaa A, Nefzaoui A, Shideed K, Awawedha F, Hassan SH, Sweidan Y (2001) Crop livestock integration: alternatives to stop desertification in arid regions of WANA. In: Expert meeting: scientific research and its role in combating desertification and stabilizing Sand Dunes. Taghit, Algeria, November 4–6

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New York

    Google Scholar 

  • Evans JR, Seemann JR (1989) The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences, and control. In: Briggs WR (ed) Photosynthesis. Alan R Liss Inc., New York, pp 183–205

    Google Scholar 

  • FAO (2011) Land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush

  • Feigin A, Rylski I, Meiri A, Shalhevet J (1987) Response of melon and tomato plants to chloride-nitrate ratios in saline nutrient solutions. J Plant Nutr 10:1787–1794

    Article  CAS  Google Scholar 

  • Feigin A, Pressman E, Imas P, Miltau O (1991) Combined effects of KNO3 and salinity on yield and chemical composition of lettuce and Chinese cabbage. Irrig Sci 12:223–230

    Article  Google Scholar 

  • Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt resistance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity resistance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) Mechanism of salt resistance in halophytes. Ann Rev Plant Physio 28:89–121

    Article  CAS  Google Scholar 

  • Forment J, Naranjo MA, Roldán M, Serrano R, Vicente O (2002) Expression of Arabidopsis SR-like splicing proteins confers salt resistance to yeast and transgenic plants. Plant J 30:511–519

    Article  PubMed  CAS  Google Scholar 

  • Freitas H, Breckle SW (1992) Importance of bladder hairs for salt resistance of field-grown Atriplex species from a Portuguese salt marsh. Flora 187:283–297

    Google Scholar 

  • Geissler N, Hussin S, Koyro H-W (2009) Interactive effects of NaCl salinity, elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ Exp Bot 65:220–231

    Article  CAS  Google Scholar 

  • Glenn E, Brown JJ, Blumwald E (1999) Salt-tolerant mechanisms and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Högy P (2002) Wirkungen erhöhter CO2- und/oder Ozonkonzentrationen auf den Ertrag und die Qualität landwirtschaftlicher Nutzpflanzen: dissertation. University of Giessen, Germany

    Google Scholar 

  • Huang Y, Zhang G, Wu F, Chen J, Zhou M (2006) Differences in physiological traits among salt-stressed barley genotypes. Commun Soil Sci Plan 37:557–570

    Article  CAS  Google Scholar 

  • Huchzermeyer B, Koyro H-W (2005) Salt and drought stress effects on photosynthesis. In: Pessarakli M (ed) Handbook of plant and crop stress, 2nd edn. Marcel Dekker Inc., New York, pp 751–778

    Google Scholar 

  • Jeschke WD (1984) K+-Na+ exchange at cellular membranes, intercellular compartmentation of cations, and salt resistance. In: Staples RC, Toeniessen GH (eds) Salinity tolerance in plants strategies for crop improvement. Wiley, New York, pp 37–66

    Google Scholar 

  • Karimi SH, Ungar IA (1984) The effect of salinity on the ion content and water relations of Atriplex triangularis. In: Tiedemann AR, McArthur ED, Stutz HC, Stevens R, Johnson KL (eds) Proceeding of the symposium on the biology of Atriplex and related Chenopods, pp 124–130

  • Kelley DB, Goodin JR, Miller DR (1982) Biology of Atriplex. In: Sen DN, Rajpurohit KST (eds) Contribution to the ecology of halophytes. Task Veg Sci 2. Dr. W. Junk Publishers, Hague, pp 79–107

    Chapter  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophytes Atriplex griffithii var. stocksii. Ann Bot Lond 85:225–232

    Article  CAS  Google Scholar 

  • Koyro H-W (2000) Effect of high NaCl-salinity on plant growth, leaf morphology, and ion composition in leaf tissues of Beta vulgaris ssp. maritima. J Appl Bot Angew Bot 74:67–73

    CAS  Google Scholar 

  • Koyro H-W (2002) Mechanisms of adaptation to high NaCl-salinity in halophytes: a review. In: Lieth H (ed) Sustainable use of halophytes. Kluwer, Dordrecht

    Google Scholar 

  • Koyro H-W (2003) Study of potential cash crop halophytes in a quick check system. Task Veg Sci 38:5–17

    Google Scholar 

  • Koyro H-W, Huchzermeyer B (1999) Influence of high NaCl-salinity on growth, water and osmotic relations of the halophyte Beta vulgaris ssp. maritima: development of a quick check. In: Hamdy A, Lieth H, Todorovic M, Moschenko M (eds) Halophytes uses in different climates I. Backhuys Publishers, Leiden, pp 89–103

    Google Scholar 

  • Koyro H-W, Geissler N, Hussin S, Huchzermeyer B (2006) Mechanisms of cash crop halophytes to maintain yield and reclaim soils in arid areas. In: Khan MA, Weber DJ (eds) Task Veg Sci 40: ecophysiology of high salinity tolerant plants. Springer, Berlin, pp 345–366

    Chapter  Google Scholar 

  • Koyro H-W, Geissler N, Hussin S, Debez A, Huchzermeyer B (2008) Strategies of halophytes to survive in a salty environment. In: Khan NA, Singh S (eds) Abiotic stress and plant responses. I.K. International Publishing House, New Delhi, pp 83–104

    Google Scholar 

  • Koyro H-W, Geissler N, Seenivasan R, Huchzermeyer B (2011) Plant stress physiology; physiological and biochemical strategies allowing to thrive under ionic stress. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. CRC press, Taylor & Francis Group, West Palm Beach, pp 1051–1094

    Google Scholar 

  • Koyro H-W, Ahmed P, Geissler N (2012) Abiotic stress response in plants: an overview. In: Ahmed P, Prasad MNV (eds) Environmental adaptation and stress tolerance of plants in the era of climate change. Springer, Dordrecht

    Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht

    Google Scholar 

  • Le Houérou HN (1995) Forage halophytes in the Mediterranean basin. In: Chouker-Allah R, Malcolm CV, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker Inc, New York, pp 115–136

    Google Scholar 

  • Lieth H, Mochtschenko M (2002) Halophyte uses in different climates IV: cashcrop halophytes for future halophytes growers. Backhuys Publishers, Leiden

    Google Scholar 

  • Lieth H, Moschenkom M, Lohmann M, Koyro H-W, Hamdy A (1999) Halophytes uses in different climates I: ecological and physiological studies. In: Lieth H (ed) Progress in biometeorology, vol 3. Backhuys Publishers, Leiden

    Google Scholar 

  • Liu F, Stützel H (2002) Leaf expansion, stomatal conductance and transpiration of vegetable amaranth (Amaranthus spp.) in response to soil drying. J Am Soc Hortic Sci 127:878–883

    Google Scholar 

  • Liu X, Duan D, Li W, Tadano T, Khan A (2006) A comparative study on responses of growth and solute composition in halophytes Suaeda salsa and Limonium bicolor to salinity. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Netherlands, pp 135–143

    Chapter  Google Scholar 

  • Makino A, Osmond B (1991) Effect of nitrogen nutrition on nitrogen partitioning between chloroplast and mitochondria in pea and wheat. Plant Physiol 96:335–362

    Article  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plantarum 43:491–500

    Article  CAS  Google Scholar 

  • Marcum KB (2006) Saline tolerance physiology in grasses. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Task Veg Sci 40. Springer, Dordrecht, pp 157–172

    Chapter  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, New York

    Google Scholar 

  • Martínez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 56:2421–2431

    Article  PubMed  Google Scholar 

  • Masuko T, Minami A, Iwasaki N, Majima, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339:69–72

    Article  PubMed  CAS  Google Scholar 

  • Misra N, Gupta AK (2005) Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci 169:331–339

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13:143–160

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Murakeozy EP, Nagy Z, Duhaze C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160:395–401

    Article  PubMed  CAS  Google Scholar 

  • Naidoo G, Mundree SG (1993) Relationship between morphological and physiological responses to water logging and salinity in Sporobolus virginicus (L.) Kunth. Oecologia 93:360–366

    Article  Google Scholar 

  • Naidoo G, Jhanke J, Von Willert DJ (1995) Gas exchange responses of the C4 grass, Sporobolus virginicus (Poaceae) to salinity stress. In: Khan MA, Ungar IA (eds) Biology of salt tolerant plants. Department of Botany, University of Karachi, Karachi, pp 121–130

    Google Scholar 

  • Navarro A, Banón S, Conejero W, Sánchez-Blanco MJ (2008) Ornamental characters, ion accumulation and water status in Arbutus unedo seedlings irrigated with saline water and subsequent relief and transplanting. Environ Exp Bot 62:364–370

    Article  CAS  Google Scholar 

  • Nerd A, Pasternak D (1992) Growth, ion accumulation, and nitrogen fractioning in Atriplex barclayana grown at various salinities. J Range Manage 45:164–166

    Article  Google Scholar 

  • Osman AE, Ghassaeli F (1997) Effects of storage conditions and presence of fruiting bracts on the germination of Atriplex halimus and Salsola Vermiculata. Exp Agric 33:149–155

    Article  Google Scholar 

  • Pace GH, Volk RJ, Jackson WA (1990) Nitrate reduction in response to CO2-limited photosynthesis: relationship to carbohydrate supply and nitrate reductase activity in maize seedlings. Plant Physiol 92:286–292

    Article  PubMed  CAS  Google Scholar 

  • Pessarakli M, Marcum KB, Kopec DM (2005) Growth responses and nitrogen-15 absorption of desert saltgrass under salt stress. J Plant Nutr 28:1441–1452

    Article  CAS  Google Scholar 

  • Pitman MG (1965) Transpiration and the selective uptake of potassium by barley seedlings (Hordeum vulgare cv. Bolivia). Aust J Biol Sci 18:987–999

    CAS  Google Scholar 

  • Popp M, Smirnoff N (1995) Polyol accumulation and metabolism during water deficit. In: Smirnoff N (ed) Environment and plant metabolism: flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 199–215

    Google Scholar 

  • Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II efficiency and the xanthophylls cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol 159:479–486

    Article  CAS  Google Scholar 

  • Ramos J, Lopez MJ, Benlloch M (2004) Effect of NaCl and KCl salts on the growth and solute accumulation of the halophyte Atriplex nummularia. Plant Soil 259:163–168

    Article  CAS  Google Scholar 

  • Rathert G (1982) Influence of extreme K:Na ratios and high substrate salinity on plant metabolism of crops differing in salt tolerance. V: ion-specific salinity effects on invertase in leaves of bush bean and sugar beet plants. J Plant Nutr 5:97–110

    Article  CAS  Google Scholar 

  • Rivelli AR, Lovelli S, Perniola M (2002) Effect of salinity on gas exchange, water relations growth of sunflower (Helianthus annuus). Funct Plant Biol 29:1405–1415

    Article  CAS  Google Scholar 

  • Rozema J, Flowers TJ (2008) Crops for a salinized world. Science 322:1478–1480

    Article  PubMed  CAS  Google Scholar 

  • Schirmer U, Breckle SW (1982) The role of bladders for salt removal in some Chenopodiaceae (mainly Atriplex species). In: Sen DN, Rajpurohit KS (eds) Contribution to the ecology of halophytes. Dr. W. Junk publisher, Hauge, pp 215–231

    Chapter  Google Scholar 

  • Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Sci Hortic 78:5–38

    Article  CAS  Google Scholar 

  • Silveira JAG, Araújo SAM, Lima JPMS, Viegas RA (2009) Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environ Exp Bot 66:1–8

    Article  CAS  Google Scholar 

  • Singh AK, Chakravarthy D, Singh TPK, Singh HN (1996) Evidence for a role of l-proline as a salinity protectant in the cyanobacterium Nostoc muscorum. Plant Cell Environ 19:490–494

    Article  CAS  Google Scholar 

  • Slama I, Ghnaya T, Messedi D, Hessini K, Labidi N, Savoure A, Abdelly C (2007) Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grown in mannitol-induced water stress. J Plant Res 120:291–299

    Article  PubMed  CAS  Google Scholar 

  • Sobrado MA (2005) Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica 43:217–221

    Article  Google Scholar 

  • Steubing L, Fangmeier A (1992) Pflanzenökologisches Praktikum. Eugen Ulmer-Verlag, Stuttgart

    Google Scholar 

  • Storey R, Wyn Jones RG (1979) Responses of Atriplex spongiosa and Suaeda monoica to salinity. Plant Physiol 63:156–162

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot Lond 91:503–527

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:1–10

    Article  Google Scholar 

  • Wang L-W, Showalter AM (2004) Cloning and salt-induced, ABA-independent expression of choline mono-oxygenase in Atriplex prostrata. Physiol Plantarum 120:405–412

    Article  CAS  Google Scholar 

  • Wang SM, Zhu XY (1994) Studies on the characteristics of ion absorption and distribution in Puccinellia tenuiflora. Acta Pratacul Sin 3:39–43

    CAS  Google Scholar 

  • Wang L, Showalter A, Ungar A (1997) Effect of salinity on growth, ion content, and cell wall chemistry in Atriplex prostrata (Chenopodiaceae). Am J Bot 84:1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wan C, Wang Y, Chen H, Zhou Z, Fu H, Sosebee RE (2004) The characteristics of Na, K and free proline distribution in several drought-resistant plants of the Alxa Desert, China. J Arid Environ 56:525–539

    Article  Google Scholar 

  • Wyn Jones RG, Gorham J (2002) Intra- and intercellular compartmentation of ions: a study in specificity and plasticity. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Kluwer, Dordrecht, pp 159–180

    Google Scholar 

  • Yeo AR, Flowers TJ (1986) Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. In: Turner NC, Passioura JB (eds) Effect of drought on plant growth. Salts in soils. CSIRO, Melbourne, pp 161–173

    Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the German Academic Exchange Service (DAAD) is gratefully acknowledged. The authors are indebted to Mr. Gerhard Mayer, Mrs. Angelika Bölke, Mr. Jürgen Franz and Mr. Wolfgang Stein for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hussin.

Additional information

Communicated by L. Bavaresco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussin, S., Geissler, N. & Koyro, HW. Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. Acta Physiol Plant 35, 1025–1038 (2013). https://doi.org/10.1007/s11738-012-1141-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1141-5

Keywords

Navigation