Skip to main content
Log in

Purification and characterisation of monoamine oxidase from Avena sativa

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

FAD-containing monoamine oxidase (MAO; EC 1.4.3.4) oxidises monoamines to their corresponding aldehydes, H2O2, and NH3. It has been purified to homogeneity in mammals, but to our knowledge, there have been no reports of the enzyme in plants. MAO activity was detected in Avena sativa seedlings during germination using benzylamine as substrate. The enzyme was purified to homogeneity (as assessed by native PAGE) by Sephadex G-25, DEAE Sephacel, hydroxyapatite, Mono Q, and TSK-GEL column chromatographies. The molecular mass estimated by gel filtration using the TSK-GEL column was 220 kDa. SDS-PAGE yielded four distinct protein bands of 78, 58, 55, and 32 kDa molecular masses. The pI value of the enzyme was 6.3. The enzyme showed high substrate specificity for an endogenous amine, phenethylamine, which was oxidised to phenylacetaldehde, but not for ethylamine, propylamine, butylamine, pentylamine, dopamine, serotonin, tryptamine, or tyramine. The K m values for benzylamine and phenethylamine were 2.7 × 10−4 and 7.1 × 10−4 M, respectively. Enzyme activity was not inhibited by pargyline, clorgyline, semicarbazide, or Na-diethyldithiocarbamate. Benzaldehyde, the product of benzylamine oxidation, exhibited strong competitive inhibition of enzyme activity with a Ki of 3 μM. FAD was identified by ODS-column chromatography as an enzyme cofactor. The enzyme contained 2 mol of FAD per 220,000 g of enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agostinelli E, Arancia G, Dalla L, Belli VF, Marra M, Salvi M, Toninello A (2004) The biological functions of polyamine oxidation products by amine oxidases. Perspectives of clinical applications. Amino Acids 27:347–358

    Article  PubMed  CAS  Google Scholar 

  • Awal HMA, Hirasawa EJ (1995) Diamine oxidase from millet catalyzes the oxidation of 1, 3-diaminopropane. J Plant Res 108:395–397

    Article  CAS  Google Scholar 

  • Binda C, Coda A, Angelini R, Federico R, Ascenzi P, Mattevi A (1999) A 30-angstrom-long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase. Structure Fold Des 7:265–276

    Article  PubMed  CAS  Google Scholar 

  • Binda C, Mattevi A, Edmondson DE (2002) Structure-function relationships in flavoenzyme-dependent amine oxidations. A comparison of polyamine oxidase and monoamine oxidase. J Biol Chem 277:23973–23976

    Article  PubMed  CAS  Google Scholar 

  • Bouchereau A, Guénot P, Larher F (2000) Analysis of amines in plant materials. J Chromatography B 747:49–67

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biol Chem 72:248–254

    CAS  Google Scholar 

  • Clark GS (1990) Phenylethyl alcohol. Perfumer Flavorist 15:37–44

    CAS  Google Scholar 

  • Dailey TA, Dailey HA (1998) Identification of an FAD superfamily containing protoporphyrinogen oxidases, monoamine oxidases and phytoene desaturase. J Biol Chem 273:13658–13662

    Article  PubMed  CAS  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis. II. Methods and application to human serum proteins. Annu N Y Acad Sci 121:404–427

    Article  CAS  Google Scholar 

  • Denney RM, Fritz RR, Patel N, Abell CW (1982) Human liver MAO-A and MAO-B separated by immunoaffinity chromatography with MAO-B-specific monoclonal antibody. Science 215:1400–1403

    Article  PubMed  CAS  Google Scholar 

  • Fabre CE, Blanc PJ, Goma G (1998) Production of 2-phenylethyl alcohol by Kluyveromyces marxianus. Biotechnol Prog 14:270–274

    Article  PubMed  CAS  Google Scholar 

  • Furia TE, Bellanca N, Fenaroli’s (1971) Handbook of flavor ingredients. CRC Press, Cleveland

  • Geha RM, Chen K, Wouters J, Ooms F, Shih JC (2002) Analysis of conserved active site residues in monoamine oxidase A and B and their three-dimensional molecular modeling. J Biol Chem 277:17209–17216

    Article  PubMed  CAS  Google Scholar 

  • Gomes B, Igaue I, Kloepfer HG, Yasunobu KT (1969) Amine oxidase XIV. Isolation and characterization of the multiple beef liver amine oxidase components. Arch Biochem Biophys 132:16–27

    Article  PubMed  CAS  Google Scholar 

  • Greenawalt JW, Schnaitman C (1970) An appraisal of use of monoamine oxidase as an enzyme marker for outer membrane of rat liver mitochondria. J Cell Biol 46:173–179

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275

    Article  PubMed  CAS  Google Scholar 

  • Grosse W (1982) Function of serotonin in seeds of walnuts. Phytochemistry 21:819–822

    Article  CAS  Google Scholar 

  • Heldt H-W (2011) Plant Biochemistry. Academic Press, New York

    Google Scholar 

  • Hirasawa EJ, Livingstone JR, Yoshida I, Tarui Y (2003) Purification and properties of monoamine oxidase from Avena sativa. J Plant Res 116(Supplement):118

    Google Scholar 

  • Kuwahara T, Takamoto S, Ito A (1990) Primary structure of rat monoamine oxidase a deduced from cDNA and its expression in rat tissues. Agri Biol Chem 54:253–257

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • McGowan RE, Muir RM (1971) Purification and properties of amine oxidase from epicotyls of Pisum sativum. Plant Physiol 47:644–648

    Article  PubMed  Google Scholar 

  • Muhtasib H, Evans DL (1987) Linamarin and histamine in the defense of adult Zygaena filipendulae. J Chem Ecol 13:133–142

    Article  CAS  Google Scholar 

  • Nara S, Igaue I, Gomes B, Yasunobu KT (1966) The prosthetic groups of animal amine oxidases. Biochem Biophys Res Commun 23:324–328

    Article  PubMed  CAS  Google Scholar 

  • Odjakova M, Hadjiivanova C (1997) Animal neurotransmitter substances in plants. Bulg J Plant Physiol 23:94–102

    CAS  Google Scholar 

  • Percival FW, Purves WK (1974) Multiple amine oxidases in cucumber seedlings. Plant Physiol 54:601–607

    Article  PubMed  CAS  Google Scholar 

  • Schilling B, Lerch K (1995) Amine oxidases from Aspergillus niger; identification of a novel flavin-dependent enzyme. Biochem Biophy Acta 1243:529–537

    Article  Google Scholar 

  • Šebela M, Radová A, Angelini R, Tavladoraki P, Frébort I, Peč (2001) FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci 160:197–207

  • Seiler N (2004) Catabolism of polyamines. Amino Acids 26:217–233

    PubMed  CAS  Google Scholar 

  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from gene to behaviors. Annu Rev Neurosci 22:197–217

    Article  PubMed  CAS  Google Scholar 

  • Smith TA (1977) Recent advances in the biochemistry of plant amines. In: Reinhold L, Harbone JB, Swain T (eds) Progress in Phytochemistry. Pergamon Press, Oxford, pp 27–82

    Chapter  Google Scholar 

  • Smith TA (1980) Plant amines. Secondary plant products. In: Bell IA, Charlwood BV (ed.) Encyclopedia of Plant Physiology New Series, vol 8. Springer, Berlin, pp 433–460

  • Suzuki Y, Hirasawa E, Yanagisawa H, Matsuda H (1990) The enzymes of polyamine metabolism in higher plants. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene; biochemistry, physiology and interaction. American Society of Plant Physiologists, Rockville, pp 73–90

  • Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, Klee HJ (2006) Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. PANS 103:8287–8292

    Article  CAS  Google Scholar 

  • Tretyn A, Kendrick RE (1991) Acetylcholine in plants: presence, metabolism and mechanism of action. Bot Rev 57:33–73

    Article  Google Scholar 

  • Tsugeno Y, Ito A (1997) A key amino acid responsible for substrate selectivity of monoamine oxidase A and B. J Biol Chem 272:14033–14036

    Article  PubMed  CAS  Google Scholar 

  • Tsushida T, Takeo T (1985) Purification and some properties of tea leaf amine oxidase. Agric Biol Chem 49:319–326

    Article  CAS  Google Scholar 

  • Ueno M, Shibata H, Kihara J, Honda Y, Arase S (2003) Increased tryptophan decarboxylase and monoamine oxidase activities induce Sekiguchi lesion formation in rice infected with Magnaporthe grisea. Plant J 36:215–228

    Article  PubMed  CAS  Google Scholar 

  • Walsch C (1978) Amine oxidase, Chap 14. A. 1. In: Enzymatic reaction mechanisms. W.H. Freeman, NY, pp 451–454

  • Welsh FW, Murray WD, Williams RE (1989) Microbiological and enzymatic production of flavor and fragrance chemicals. Crit Rev Biotechnol 8:105–169

    Article  Google Scholar 

  • Weyler W, Salach JI (1985) Purification and properties of mitochondrial monoamine oxidase type A from human placenta. J Biol Chem 260:13199–13207

    PubMed  CAS  Google Scholar 

  • Wink M, Hartmann T (1982) Localization of the enzymes of quinolizidine alkaloid biosynthesis in leaf chloroplasts of Lupinus polyphyllus. Plant Physiol 70:74–77

    Article  PubMed  CAS  Google Scholar 

  • Zhou BP, Lewis DA, Kwan SW, Abell CW (1995) Flavinylation of monoamine oxidase B. J Biol Chem 270:23653–23660

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Obrycki J, Ochieng S, Baker T, Pickett J, Smiley D (2005) Attraction of two lacewing species to volatiles produced by host plants and aphid prey. Naturwissenschaften 92:277–281

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Hirasawa.

Additional information

Communicated by Z.-L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YM., Livingstone, J.R. & Hirasawa, E. Purification and characterisation of monoamine oxidase from Avena sativa . Acta Physiol Plant 34, 1411–1419 (2012). https://doi.org/10.1007/s11738-012-0939-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-0939-5

Keywords

Navigation