Skip to main content
Log in

Influence of zinc on cadmium-induced toxicity in nodules of pigeonpea (Cajanus cajan L. Millsp.) inoculated with arbuscular mycorrhizal (AM) fungi

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) fungi are known to alleviate heavy-metal stress in plants. The intent of the present work was to analyze accumulation of heavy metals (Cd and Zn) in nodules of two Cajanus cajan (L.) Millsp. genotypes and their subsequent impact on nitrogen fixation, oxidative stress, and non-protein thiols (glutathione and phytochelatins) with and without AM fungus Glomus mosseae. Accumulation of Cd and Zn in nodules resulted in sharp reduction in nodule number, nodule dry mass as well as nitrogen fixation (leghemoglobin and nitrogenase (N2ase)), although Cd had more pronounced effects than Zn. Cd-induced lipid peroxidation, H2O2 accumulation, and electrolyte leakage were largely reversed by Zn supplementation. Zn application significantly altered the negative effects of Cd on the synthesis of non-protein thiols, suggesting antagonistic behaviour of Zn. Higher concentration of Zn was more effective in lessening the negative effects of Cd than its lower concentration. Remarkable genotypic variation was found, with more severe effects of both the metals in P792 than Sel 85N. Glomus mosseae attenuated the phytotoxic effects of metals in nodules by decreasing metal uptake, oxidative stress, and by enhancing defense system ultimately leading to better nitrogen-fixing potential of pigeonpea nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARA:

Acetylene reduction activity

AM:

Arbuscular mycorrhiza

EL:

Electrolyte leakage

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione/glutathione disulphide

H2O2 :

Hydrogen peroxide

LHb:

Leghemoglobin

MDA:

Malondialdehyde

NP-SH:

Non-protein thiols

PCs:

Phytochelatins

PCS:

Phytochelatin synthase

ROS:

Reactive oxygen species

TG:

Total glutathione

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer, New York, p 866

    Google Scholar 

  • Almenor GA, Cadiz NM (2007) Morphological, growth, nodulation and membrane lipid peroxidation response of Mani–Mani (Arachis pintoi Krap. & Greg.) to elevated levels of cadmium and lead. Philipp Agric Scientist 90:153–160

    Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulphide in biological samples. Methods Enzymol 113:548–555

    Article  PubMed  CAS  Google Scholar 

  • Andrade SAL, Abreu CA, de Abreu MF, Silveira APD (2004) Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbiosis under soybean plants. Appl Soil Ecol 26:123–131

    Article  Google Scholar 

  • Andrade SAL, Gratao PL, Schiavinato SMA, Silveira APD, Azevodo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing concentrations. Chemosphere 75:1363–1370

    Article  PubMed  CAS  Google Scholar 

  • Antolin MC, Muro I, Sanchez-Diaz M (2010) Sewage sludge application can induce changes in antioxidant status of nodulated alfalfa plants. Ecotoxicol Environ Safety 73:436–442

    Article  PubMed  Google Scholar 

  • AOAC (1990) Official method of analysis of the association of analytical chemists. Association of analytical chemists, Virginia 15th ed. Vol. 1

  • Aravind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397

    Article  CAS  Google Scholar 

  • Aravind P, Prasad MNV, Malec P, Waloszek A, Strzalka K (2009) Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. J Trace Ele Med Biol 23:50–60

    Article  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Balestrasse KB, Gardey L, Gallego SM, Tomaro ML (2001) Response of antioxidant defense system in soybean nodules and roots subjected to cadmium stress. Aust J Plant Physiol 28:497–504

    CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Tomaro ML (2004) Cadmium-induced senescence in nodules of soybean (Glycine max. L.) plants. Plant Soil 262:373–381

    Article  CAS  Google Scholar 

  • Becana M, Matamoros M, Udvardi M, Dalton DA (2011) Recent insights into antioxidant defenses of legume root nodules. New Phytol 188:960–976

    Article  Google Scholar 

  • Bhargava P, Srivastava AK, Urmil S, Rai LC (2005) Phytochelatin play a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol 162:1220–1225

    Article  PubMed  CAS  Google Scholar 

  • Bianucci E, del Carmen Tordable M, Fabra A, Castro S (2008) Importance of glutathione in the nodulation process of peanut (Arachis hypogaea). Physiol Plant 134:342–347

    Article  PubMed  CAS  Google Scholar 

  • Bothe H, Regvar M, Turnau K (2010) Arbuscular mycorrhiza, heavy metal, and salt tolerance. In: Sherameti I, Varma A (eds) Soil heavy metals, soil biology. Springer, Berlin, pp 87–111

    Chapter  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  PubMed  CAS  Google Scholar 

  • Burleigh SH, Kristensen BK, Bechmann IE (2003) A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol 52:1077–1088

    Article  PubMed  CAS  Google Scholar 

  • Carpena RO, Vázquez S, Esteban E, Fernández-Pascual M, de Felipe MR, Zornoza P (2003) Cadmium-stress in white lupin: effects on nodule structure and functioning. Plant Physiol Biochem 41:911–919

    Article  CAS  Google Scholar 

  • Chen W, Bruhlmann F, Richias RD, Mulchandani A (1999) Engineering of improved microbes and enzymes for bioremediation. Curr Opinion Biotech 10:137–141

    Article  CAS  Google Scholar 

  • Chen YX, He YF, Yang Y, Yu YL, Zheng SJ, Tian GM, Luo YM, Wong MH (2003) Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils. Chemosphere 50:781–787

    Article  PubMed  CAS  Google Scholar 

  • Davies MJ, Puppo A (1992) Direct detection of a globin-derived radical in leghemoglobin treated with peroxides. Biochem J 281:197–201

    PubMed  CAS  Google Scholar 

  • Del Longo OT, Gonzalez CA, Pastori GM, Trippi VS (1993) Antioxidant defenses under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiol 34:1023–1028

    Google Scholar 

  • Evans PJ, Gallesi D, Mathieu C, Hernández MJ, de Felipe MR, Halliwell B, Puppo A (1999) Oxidative stress occurs during soybean nodule senescence. Planta 208:73–79

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Frendo P, Harrison J, Norman C, Hernández-Jiménez MJ, Van de Sype G, Gilabert A, Puppo A (2005) Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol Plant Microbe Interac 18:254–259

    Article  CAS  Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300

    Google Scholar 

  • Garg N, Bhandari P (2012) Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp. Int J Phytoremed 14:62–74

    Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustai Dev 30:581–599

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (Pigeonopea). J Plant Growth Regul 27:115–124

    Article  CAS  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbiol Ecol 54:753–760

    Article  CAS  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118–10123

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Guerrero M, Azcon-Aguilar C, Ferrol N (2006) GintABC1 and GintMT1 are involved in Cu and Cd homeostasis in Glomus intraradices. In: Abstracts of the 5th International conference on mycorrhiza, Granada, Spain

  • Gupta AK, Sinha S (2006) Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere 64:161–173

    Article  PubMed  CAS  Google Scholar 

  • Hartree EF (1957) Haemetin compounds. In: Paech K, Tracey MV (eds) Modern methods of plant analysis. Springer-Verlag, New York, pp 197–245

    Google Scholar 

  • Hayes WJ, Chaudhry TM, Buckney RT, Khan AG (2003) Phytoaccumulation of trace metals at the Sunny Corner mine, New South Wales, with suggestions for a possible remediation strategy. Aust J Ecotoxicol 9:69–82

    CAS  Google Scholar 

  • Heath RL, Packer I (1968) Photoperoxidation in isolated chloroplast I, Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Herdina JA, Silsbury JH (1990) Estimating nitrogenase activity of faba bean (Vicia faba L.) by acetylene reduction (ARA) assay. Aust J Plant Physiol 17:489–502

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhizal and heavy metal tolerance. Phytochemistry 68:139–146

    Article  PubMed  CAS  Google Scholar 

  • Ibekwe AM, Angle JS, Chaney RL, Van Berkum P (1995) Sewage sludge and heavy metal effects on nodulation and nitrogen fixation of legumes. J Environ Qual 24:1199–1204

    Article  CAS  Google Scholar 

  • Ibekwe AM, Angle JS, Chaney RL, Van Berkum P (1996) Zinc and cadmium toxicity to alfalfa and its microsymbiont. J Environ Qual 25:1032–1040

    Article  CAS  Google Scholar 

  • Kamaludeen SPB, Ramasamy K (2008) Rhizoremediation of metals: harnessing microbial communities. Indian J Microbiol 48:80–88

    Article  CAS  Google Scholar 

  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants. Physiol Plant 113:158–164

    Article  PubMed  CAS  Google Scholar 

  • Kocsy G, Kobrehel K, Szalai G, Duvian M-P, Buzas Z, Galiba G (2004) Thioredoxin and glutathione as abiotic stress tolerance markers in maize. Environ Exp Bot 52:101–112

    Article  CAS  Google Scholar 

  • Lakzian A, Murphy P, Turner AJ, Beynon L, Giller KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34:519–529

    Article  CAS  Google Scholar 

  • Ligero F, Lluch C, Olivares J (1986) Evolution of ethylene from roots of Medicago sativa plants inoculated with Rhizobium meliloti. J Plant Physiol 125:361–365

    Article  CAS  Google Scholar 

  • Lin R, Wang X, Luo Y, Du W, Guo H, Yin D (2007a) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69:89–98

    Article  PubMed  CAS  Google Scholar 

  • Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS, Zhu YG (2007b) Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29:473–481

    Article  PubMed  CAS  Google Scholar 

  • Lindner RC (1944) Rapid analytical method for some of the more inorganic constituents of plant tissue. Plant Physiol 19:76–89

    Article  PubMed  CAS  Google Scholar 

  • Loscos J, Matamoros MA, Becana M (2008) Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol 146:1282–1292

    Article  PubMed  CAS  Google Scholar 

  • Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M (1999) Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol 121:879–888

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulphur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  PubMed  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindaranjan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  PubMed  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  PubMed  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299

    Article  PubMed  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1973) Determination of total nitrogen in plant material. Agronomy J 65:109–112

    Article  CAS  Google Scholar 

  • Olivera M, Tejera N, Iribane C, Ocana A, Lluch C (2004) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiol Plant 121:498–505

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis, Agron No.9, Part 2: Chemical and microbiological properties, 2nd edn, American Society of Agronomy, Madison

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    Article  PubMed  CAS  Google Scholar 

  • Ouzounidou GE, Eleftheriou P, Karataglis S (1992) Ecophysiological and ultrastructural effects of copper in Thlaspi ochroleucum (cruciferae). Can J Bot 70:947–957

    Article  CAS  Google Scholar 

  • Pajuelo E, Rodriguez-Llorente ID, Dary M, Palomares AJ (2008) Toxic effects of arsenic on SinorhizobiumMedicago sativa symbiotic interaction. Environ Pollut 154:203–211

    Article  PubMed  CAS  Google Scholar 

  • Rabie GH (2005) Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. African J Biotechnol 4:332–345

    CAS  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontomé C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118

    Article  PubMed  CAS  Google Scholar 

  • Ramos J, Naya L, Gay M, Abian J, Becana M (2008) Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicas. Plant Physiol 148:536–545

    Article  PubMed  CAS  Google Scholar 

  • Redon PO, Beguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago truncatula and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195

    Article  PubMed  CAS  Google Scholar 

  • Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157:555–567

    Article  CAS  Google Scholar 

  • Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz K-J, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress, New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Chinnusamy V, Meena RC (2009) Waterlogging induced oxidative stress and antioxidant enzyme activities in pigeon pea. Biol Plant 53:493–504

    Article  CAS  Google Scholar 

  • Scheublin TR, van der Heijden MGA (2006) Arbuscular mycorrhizal fungi colonize non-fixing root nodules of several legume species. New Phytol 172:732–738

    Article  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Skujins J, Nohrstedt H, Dens S (1986) Development of a sensitive biological method for determination of a low level toxic contamination in soil. I. Selection of nitrogenase activity. Swedish J Agricul Res 16:113–118

    CAS  Google Scholar 

  • Smith AP, de Ridder BP, Guo WJ, Seeley EH, Regnier FE, Goldsbrough PB (2004) Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor-and copper-treated seedlings. J Biol Chem 279:26098–26104

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Wang XR, Ding SM, Yuan XF (2005) Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L.). Environ Toxicol 20:195–201

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, Kellos T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Szollosi R, Varga IS, Erdei L, Mihalik E (2009) Cadmium-induced oxidative stress and antioxidative mechanisms in germinating Indian mustard (Brassica juncea L.) seeds. Ecotoxicol Environ Safety 72:1337–1342

    Article  PubMed  CAS  Google Scholar 

  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tiss Organ Cult 88:201–216

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Vodnik D, Grcman H, Macek I, van Elteren JT, Kovacevic M (2008) The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136

    Article  PubMed  CAS  Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils: Effects of variations in digestion conditions and of organic soil constituents. Soil Sci 63:251–263

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aus J Expt Agri 47:712–720

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Impact of zinc-tolerant plant growth-promoting rhizobacteria on lentil grown in zinc-amended soil. Agron Sustain Dev 28:449–455

    Article  Google Scholar 

  • Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D, Penney N (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27:786–792

    Article  PubMed  Google Scholar 

  • Waschke A, Sieh D, Tamasloukht M, Fischer K, Mann P, Franken P (2006) Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungi Glomus intraradices. Mycorrhiza 17:1–10

    Article  PubMed  CAS  Google Scholar 

  • Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226:1363–1378

    Article  PubMed  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Zeng XW, Ma LQ, Qiu RL, Tang YT (2011) Effects of Zn on plant tolerance and non-protein thiol accumulation in Zn hyperaccumulator Arabis paniculata Franch. Env Exp Bot 70:227–232

    Article  CAS  Google Scholar 

  • Zhang X, Li C, Nan Z (2010) Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. J Hazard Mater 175:703–709

    Article  PubMed  CAS  Google Scholar 

  • Zwiazek JJ, Blake TJ (1991) Early detection of membrane injury in black spruce (Picea mariana). Can J For Res 21:401–404

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from University Grants Commission (UGC), New Delhi, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Garg.

Additional information

Communicated by W. Filek.

N. Garg and H. Kaur are equal contributors to the research, with N. Garg being the supervisor and H. Kaur, a research student.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, N., Kaur, H. Influence of zinc on cadmium-induced toxicity in nodules of pigeonpea (Cajanus cajan L. Millsp.) inoculated with arbuscular mycorrhizal (AM) fungi. Acta Physiol Plant 34, 1363–1380 (2012). https://doi.org/10.1007/s11738-012-0933-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-0933-y

Keywords

Navigation