Skip to main content
Log in

Expression of the zga agglutinin gene in tobacco can enhance its anti-pest ability for peach-potato aphid (Myzus persica)

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effect of introduction of the Zephyranthes grandiflora agglutinin gene (zga) to tobacco on its anti-pest ability for peach-potato aphids was investigated. PCR analysis confirmed that the zga gene was integrated into the plant genome. The results from semi-quantitative RT-PCR and real-time PCR assays revealed that the zga gene was expressed at various levels in the transgenic plants. A bioassay with aphids indicated that transgenic plants conferred enhanced resistance to aphids. Compared with the controls, the average number of aphids fed with transgenic plants during a 20-day assay evidently decreased by 70.4% in leaf disc bioassay and 77.9% in whole plant bioassay. The average number of nymph was significantly reduced by 36.4% on zga-expressing plants in leaf disc bioassay and 35.6% in whole plant bioassay. The report indicated that the introduction of zga gene to tobacco plants is a useful method to improve its anti-pest ability for aphids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Barre A, Van Damme EJM, Peumans WJ, Rouge P (1996) Structure–function relationship of monocot mannose binding lectins. Plant Physiol 112:1531–1540

    Article  PubMed  CAS  Google Scholar 

  • Barry BD, Darrah LL, Huckla DL, Antonio AQ, Smith GS, O’Day MH (2000) Performance of transgenic corn hybrids in Missouri for insect control and yield. J Econ Entomol 93:993–999

    Article  PubMed  CAS  Google Scholar 

  • Braendle C, Davis GK, Brisson JA, Sten DL (2006) Wing dimorphism in aphids. Heredity 97:192–197

    Article  PubMed  CAS  Google Scholar 

  • Chang T, Chen L, Chen S, Cai H, Liu X, Xiao G, Zhu Z (2003) Transformation of tobacco with genes encoding Helianthus tuberosus agglutinin (HTA) confers resistance to peach-potato aphid (Myzus persicae). Transgenic Res 12(5):607–614

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 95:2767–2772

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Vasquez Z, Tu J, Torrizo L, Alam MF, Oliva N et al (1998) Constitutive and tissue-specific differential expression of the cryIA(b) gene in transgenic rice plants conferring resistance to rice insect pests. Theor Appl Genet 97:20–30

    Article  CAS  Google Scholar 

  • Edwards K, Johnston C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analyses. Nucl Acids Res 98:1349

    Article  Google Scholar 

  • Foissac X, Loc NT, Christou P, Gatehouse AMR, Gatehouse JA (2000) Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J. Insect Physiol 46:573–583

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse AMR, Down RE, Powell KS, Sauvion N, Newell CA, Rahbé Y, Merryweather A, Hamilton WDO, Gatehouse JA (1996) Transgenic potato plants with enhanced-resistance to the peach-potato aphid Myzus persicae. Entomol Exp Appl 79:295–307

    Article  Google Scholar 

  • Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell CA, Tians JC, Peumans WJ, van Damme E, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphid. Transgenic Res 4(1):18–25

    Article  CAS  Google Scholar 

  • Kai GY, Zheng JU, Zhang L, Pang YZ, Liao ZH, Li ZG, Zhao LX, Sun XF, Tang KX (2003) Molecular cloning of a new lectin gene from Z grandiflora. DNA Seq 14:335–338

    PubMed  CAS  Google Scholar 

  • Li HF, Li XG, Liu X, Chang TJ, Xiao GF, Zhu Z (2002) Maize transformation of cryIAc3 gene and insect resistance of their transgenic plants. Acta Bot Sin 44:684–688

    CAS  Google Scholar 

  • Maddock SE, Hufman G (1991) Expressing in maize plants of wheat germ agglutinin, a novel source of insect resistance. In: Proceedings of the 3rd Int Cong Plant Mol Biol, Tucson, Arizona

  • Mochida O, Wahyu A, Surjani TK (1979) Some considerations on screening resistant cultivars/lines of rice plant to the brown planthopper. Nilparvata lugens (Stal) (Hom, Delphacidae). IRRI, Los Banos, Philippines, pp 1–9

  • Müler CB, Williams I, Hardeie J (2001) The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecol Entomol 26:330–340

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagadhara D, Ramesh S, Pasalu IC, Kondala RY, Krishnaiah NV, Sarma NP, Bown DP, Gatehouse JA, Reddy VD, Rao KV (2003) Transgenic indica rice resistant to sap-sucking insects. Plant Biotechnol J 1(3):231–240

    Article  PubMed  CAS  Google Scholar 

  • Perlak FJ, Oppenhuizen M, Gustafson K, Voth R, Sivasupramaniam S, Heering D et al (2001) Development and commercial use of Bollgard, cotton in the USA—early promises versus today’s reality. Plant J 27:489–501

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Van Damme EJ M (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352

    Article  PubMed  CAS  Google Scholar 

  • Rahbe Y, Sauvion N, Febvay G, Peumans WJ, Gatehouse AMR (1995) Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 76:143–155

    Article  CAS  Google Scholar 

  • Renckens S, De GH, Van MM, Hernalsteens JP (1992) Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation. Mol Gen Genet 233:53–64

    Article  PubMed  CAS  Google Scholar 

  • Sauvion N, Rahbe Y, Van Damme EJ M, Gatehouse JA, Gatehouse AMR (1996) Effects of GNA and other mannose binding lectins on development and fecundity of the peach-potato aphids. Entomol Exp Appl 79:285–293

    Article  CAS  Google Scholar 

  • Shukle RH, Murdock LL (1983) Lipoxygenase, trypsin inhibition, and lectin from soybeans: effect on larval growth of Manduca sexta (Lepidoptera: Sphingidae). Environ Entomol 12:787–791

    CAS  Google Scholar 

  • Stoger E, Williams S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73

    Article  CAS  Google Scholar 

  • Sun X, Wu A, Tang K (2002) Transgenic rice lines with enhanced resistance to the small brown planthopper. Crop Prot 21:511–514

    Article  Google Scholar 

  • Yao JH, Zhao XY, Liao ZH, Lin J, Chen ZH, Chen F, Song J, Sun XF, Tang KX (2003) Cloning and molecular characterization of a novel lectin gene from Pinellia ternata. Cell Res 13(4):301–308

    Article  PubMed  CAS  Google Scholar 

  • Ye SH, Chen S, Zhang F, Wang W, Tian Q, Liu JZ, Chen F, Bao JK (2009) Transgenic tobacco expressing Zephyranthes grandiflora agglutinin confers enhanced resistance to aphids. Appl Biochem Biotechnol 158(3):615–630

    Article  PubMed  CAS  Google Scholar 

  • Yuan ZQ, Zhao CY, Zhou Y, Tian YC (2001) Modification of GNA gene and studies on its aphid resistant. Acta Bot Sin 43(6):592–597

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Transgenic Organism New Variety Culture Key Project (2009ZX08012-002B), Fujian Science and Technology Committee Key Special Project (2008NZ0001-4), Project from Ministry of Science and Technology of China (NC2010AE0075, NC2010AE0372), Shanghai Science and Technology Committee Project (073158202, 10JC1412000, 09QH1401900, 06QA14038, 08391911800, 075405117, 065458022, 05ZR14093), National Natural Science Fund (30900110), Innovation Program of Shanghai Municipal Education Commission (09ZZ138), Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50401), Zhejiang Provincial Natural Science Fund (Y2080621) and Project from Shanghai Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyin Kai.

Additional information

Communicated by J. Sadowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Qian, Z., Ji, Q. et al. Expression of the zga agglutinin gene in tobacco can enhance its anti-pest ability for peach-potato aphid (Myzus persica). Acta Physiol Plant 33, 2003–2010 (2011). https://doi.org/10.1007/s11738-011-0715-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0715-y

Keywords

Navigation