Skip to main content
Log in

Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L.

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The present study illustrates the effect of 24-epibrassinolide (24-EBL) on morphological and biochemical parameters in radish (Raphanus sativus L.) seedlings grown under nickel (Ni) ion stress. The radish seeds pre-soaked in different concentrations of 24-EBL were sown in petridishes containing various concentrations of heavy metal (Ni).Observations were made on root/shoot length, fresh biomass, activities of antioxidant enzymes (ascorbate peroxidase, superoxide dismutase, catalase, monodehydroascorbate reductase, dehydroascorbate reductase, guaiacol peroxidase and glutathione reductase), lipid peroxidation, proline and protein content in 7-day-old Ni-stressed radish seedlings. Results indicate that seeds presoaked with 24-EBL reduced the impact of Ni-stress which was evident by assessing the morphological parameters, protein content and antioxidant enzyme activities. It was also observed that 24-EBL reduced the toxicity of heavy metal by influencing proline and malondialdehyde (MDA) content. The present study lays a foundation for understanding the role of 24-EBL in heavy metal stress amelioration, particularly in food crop. Analysis of behaviour of antioxidant enzymes will play a critical role in understanding the stress networking, further filling the knowledge gap on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aebi M (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul 33:151–153

    Article  CAS  Google Scholar 

  • Anuradha S, Rao SSR (2003) Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regul 40:29–32

    Article  CAS  Google Scholar 

  • Arora N, Bhardwaj R, Sharma P, Arora HK (2008) Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol Plant 30:833–839

    Article  CAS  Google Scholar 

  • Bajguz A (2002) Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris cells. J Plant Physiol 159:321–324

    Article  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bandurska H (2001) Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injuries? II. Proline accumulation during hardening and its involvement in reducing membrane injuries in leaves subjected to severe osmotic stress. Acta Physiol Plant 23:483–490

    Article  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhardwaj R, Arora N, Sharma P, Arora HK (2007) Effects of 28-homobrassinolide on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays L. Asian J Plant Sci 6:765–772

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803

    Article  PubMed  CAS  Google Scholar 

  • Çağ S, Gören-Sağlam N, Çingil-Bariş Ç, Kaplan E (2007) The effect of different concentration of epibrassinolide on chlorophyll, protein and anthocyanini content and peroxidase activity in excised red cabbage (Brassica oleracea L.) cotyledons. Biotechnol Biotechnol Equip 21:422–425

    Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480

    PubMed  CAS  Google Scholar 

  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37(4–5):304–313

    CAS  Google Scholar 

  • Clouse S, Sasse J (1998) Brassinosteroids: essentials regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  PubMed  CAS  Google Scholar 

  • Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci USA 83:3811–3815

    Article  PubMed  CAS  Google Scholar 

  • Dhaubhadel S, Krishna P (2008) Identification of differentially expressed genes in brassinosteroid-treated Brassica napus seedlings. Plant Growth Regul 27:297–308

    Article  CAS  Google Scholar 

  • Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol. doi:10.1016/j.nbt.2009.07.006

  • Duman F, Ozturk F (2010) Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.). J Environ Sci (China) 22(4):526–532

    Article  CAS  Google Scholar 

  • Eskew DL, Welch RM, Cary EE (1983) Nickel: an essential micronutrient for legumes and possibly all higher plants. Science 222:621–623

    Article  PubMed  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 6:418–424

    Article  Google Scholar 

  • Gajewska E, Skłodowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul 54:179–188

    Article  CAS  Google Scholar 

  • Gendron JM, Wang ZY (2007) Multiple mechanisms modulate brassinosteroid signaling. Curr Opin Plant Biol 10:436–441

    Article  PubMed  CAS  Google Scholar 

  • Gerendás J, Polacco JC, Freyermuth SK, Sattelmacher B (1999) Significance of nickel for plant growth and metabolism. J Plant Nutr Soil Sci 162:241–256

    Article  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  PubMed  CAS  Google Scholar 

  • Hartzendorf T, Rolletschek H (2001) Effect of NaCl-salinity on amino acid and carbohydrate contents of Phragmites australis. Aquat Bot 69:195–208

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151:60–66

    Article  PubMed  CAS  Google Scholar 

  • Haubrick LL, Assmann SM (2006) Brassinosteriods and plant function: some clues, more puzzles. Plant Cell Environ 29:446–457

    Article  PubMed  CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteriod enhance the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthrocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25(3):385–395

    CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  PubMed  CAS  Google Scholar 

  • Krishna P (2003) Brassinosteoids-mediated stress responses. J Plant Growth Regul 22:289–297

    Article  PubMed  CAS  Google Scholar 

  • Kulaeva ON, Burkhanova EA, Fedina AB et al (1991) Effect of brassinosterods on protein synthesis and plant-cell ultrastructure under stress conditions. In: Culter HG, Yokota T, Adam G (eds) Brassinosteroids––chemistry, bioactivity and applications. ACS Symp. Ser., Washington, pp 141–157

    Chapter  Google Scholar 

  • Li F, Asami T, Wu X, Tsang EWT, Cutler AJ (2007) A putative hydroxysteroid dehydrogenase involved in regulating plant growth and development. Plant Physiol 145:87–97

    Article  PubMed  CAS  Google Scholar 

  • Llamas AC, Ullrich I, Sanz A (2008) Ni2+ toxicity in rice: effect on membrane functionality and plant water content. Plant Physiol Biochem 46:905–910

    Article  PubMed  CAS  Google Scholar 

  • McSteen P, Zhao Y (2008) Plant hormones and signaling: common themes and new developments. Dev Cell 14:467–473

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ozdemir F, Bor M, Demiral T, Turkan I (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul 42:203–211

    Article  Google Scholar 

  • Piñol R, Simόn E (2009) Effect of 24-Epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn. J Plant Growth Regul. doi:10.1007/s00344-008-9077-0

  • Sànchez M, Revilla G, Zara I (1995) Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann Bot 75:415–419

    Article  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Skόrzyńska-Polit E, Drazkiewicz M, Krupa Z (2010) Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiol Plant 32:169–175

    Article  Google Scholar 

  • Sondhi N, Bhardwaj R, Kaur S, Kumar N, Singh B (2008) Isolation of 24-epibrassinolide from leaves of Aegle marmelos and evaluation of its antigenotoxicity employing Allium cepa chromos€omal aberration assay. Plant Growth Regul 54:217–224

    Article  CAS  Google Scholar 

  • Sudo E, Itouga M, Yoshida-Hatanaka K, Ono Y, Sakakibara H (2008) Gene expression and sensitivity in response to copper stress in rice leaves. J Exp Bot 59(12):3465–3474

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Nakagawa H, Tomita C et al (2009) BRASSINOSTEROID UPREGULATED 1, Encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol 151:669–680

    Article  PubMed  CAS  Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14(4):219–228

    Article  PubMed  Google Scholar 

  • Vardhini BV, Rao SSR (2003) Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 61:843–847

    Article  Google Scholar 

  • Vyas D, Kumar S, Ahuja PS (2007) Tea (Camellia sinensis) clones with shorter periods of winter dormancy exhibit lower accumulation of reactive oxygen species. Tree Physiol 27:1253–1259

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance from Department of Science and Technology (DST), Ministry of Science & Technology, Government of India, New Delhi, India, is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Bhardwaj.

Additional information

Communicated by S. Lewak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, I., Pati, P.K. & Bhardwaj, R. Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L.. Acta Physiol Plant 33, 1723–1735 (2011). https://doi.org/10.1007/s11738-010-0709-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0709-1

Keywords

Navigation