Skip to main content

Advertisement

Log in

Molecular characterization of a cysteine proteinase inhibitor, PgCPI, from Panax ginseng C. A. Meyer

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Phytocystatins are plant-derived cysteine proteinase inhibitors implicated in the endogenous regulation of protein turnover and defense mechanisms against insects and pathogens. A cysteine proteinase inhibitor, PgCPI, was isolated and characterized from Panax ginseng. Sequence analysis revealed that the coding cDNA sequence of PgCPI is 609 base pairs in length with a predicted molecular mass of 22.5 kDa. A GenBank BlastX search revealed that the deduced amino acid sequence of PgCPI shares a high-degree homology with cysteine proteinase inhibitors from other plants. In this present study, we analyzed the expression patterns of PgCPI against various abiotic and biotic stresses at different time points using quantitative real time-PCR. Enzymatic activity of PgCPI was also determined against cysteine proteinase. Our results reveal that PgCPI is moderately induced by NaCl, chilling, CuSO4, ABA, and jasmonic acid. However, high light, UV, MeJA, and wounding triggered a significant induction (more than fourfold) of PgCPI within 12-h post-treatment, especially PgCPI prominently accumulated by wounding (24-fold). In addition, increased transcripts of PgCPI were investigated in fungal- and nematode-infected roots. These results suggest that PgCPI is involved in defense responses to biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

CPI:

Cysteine proteinase inhibitor

ORF:

Open reading frame

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

ABA:

Abscisic acid

MeJA:

Methyl jasmonate

UV:

Ultraviolet

References

  • Abe K, Abe M, Emori Y, Kondo H, Suzuki K, Arai S (1987) Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin). J Biol Chem 262:16793–16797

    CAS  PubMed  Google Scholar 

  • Abe M, Abe K, Iwabuchi K, Domoto C, Arai S (1994) Corn cystatin I expressed in Escherichia coli: investigation of its inhibitory profile and occurrence in corn kernels. J Biochem 116:488–492

    CAS  PubMed  Google Scholar 

  • Botella MA, Xu Y, Prabha TN, Zhao Y, Narasimhan ML, Wilson KA, Nielsen SS, Bressan RA, Hasegawa PM (1996) Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol 112:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Choi D, Park JA, Seo YS, Chun YJ, Kim WT (2000) Structure and stress-related expression of two cDNAs encoding proteinase inhibitor II of Nicotiana glutinosa L. Biochim Biophys Acta 1492:211–215

    CAS  PubMed  Google Scholar 

  • Christeller JT (2005) Evolutionary mechanism acting on proteinase inhibitor variability. FEBS J 272:5710–5722

    Article  CAS  PubMed  Google Scholar 

  • Diop NN, Kidric M, Repellin A, Gareil M, d’Arcy-Lameta A, Pham Thi AT, Zuily-Fodil Y (2004) A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett 577:545–550

    Article  CAS  PubMed  Google Scholar 

  • Dopico B, Lowe AL, Wilson ID, Merodio C, Grierson D (1993) Cloning and characterization of avocado fruit mRNAs and their expression during ripening and low-temperature storage. Plant Mol Biol 21:437–449

    Article  CAS  PubMed  Google Scholar 

  • Ebel J, Mithofer A (1998) Early events in the elicitation of plant defence. Planta 206:335–348

    Article  CAS  Google Scholar 

  • Gaddour K, Vicente-Carbajosa J, Lara P, Isabel-Lamoneda I, Díaz I, Carbonero P (2001) A constitutive cystatin-encoding gene from barley (Icy) responds differentially to abiotic stimuli. Plant Mol Biol 45:599–608

    Article  CAS  PubMed  Google Scholar 

  • Green R, Fluhr R (1995) UV-B-induced PR-1 accumulation is mediated by active oxygen species. Plant Cell 7:203–212

    Article  CAS  PubMed  Google Scholar 

  • Gruden K, Strukelj B, Ravnikar M, Poljsak-Prijatelj M, Mavric I, Brzin J, Pungercar J, Kregar I (1997) Potato cysteine proteinase inhibitor gene family: molecular cloning, characterisation and immunocytochemical localisation studies. Plant Mol Biol 34:317–323

    Article  CAS  PubMed  Google Scholar 

  • Hildmann T, Ebneth M, Peña-Cortés H, Sánchez-Serrano JJ, Willmitzer L, Prat S (1992) General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell 4:1157–1170

    Article  CAS  PubMed  Google Scholar 

  • Huang YJ, To KY, Yap MN, Chiang WJ, Suen DF, Chen SCG (2001) Cloning and characterization of leaf senescence upregulated genes in sweet potato. Physiol Plant 113:384–391

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Lee BS, In JG, Sun H, Yoon JH, Yang DC (2006) Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf. Plant Cell Rep 25:599–606

    Article  CAS  PubMed  Google Scholar 

  • Lim CO, Lee SI, Chung WS, Park SH, Hwang I, Cho MJ (1996) Characterization of a cDNA encoding a cysteine proteinase inhibitor from chinese cabbage (Brassica campestris L. ssp. pekinensis) flower buds. Plant Mol Biol 30:373–379

    Article  CAS  PubMed  Google Scholar 

  • Machida S, Saito M (1993) Purification and characterization of membrane-bound chitin synthase. J Biol Chem 268:1702–1707

    CAS  PubMed  Google Scholar 

  • Mansfield TA, McAinsh MR (1995) Hormones as regulators of water balance. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Netherlands, pp 598–616

    Google Scholar 

  • Margis R, Reis EM, Villeret V (1998) Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem 359:24–30

    Article  CAS  PubMed  Google Scholar 

  • Martinez M, Diaz-Mendoza M, Carrillo L, Diaz I (2007) Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett 581:2914–2918

    Article  CAS  PubMed  Google Scholar 

  • Megdiche W, Passaquet C, Zourrig W, Zuily Fodil Y, Abdelly C (2009) Molecular cloning and characterization of novel cystatin gene in leaves Cakile maritima halophyte. J Plant Physiol 166:739–749

    Article  CAS  PubMed  Google Scholar 

  • Moons A, Prinsen E, Bauw G, Van Montagu M (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259

    Article  CAS  PubMed  Google Scholar 

  • Mosolov VV, Valueva TA (2005) Proteinase inhibitors and their function in plants: a review. Prikl Biokhim Mikrobiol 41:261–282

    CAS  PubMed  Google Scholar 

  • Oppert B, Morgan TD, Hartzer K, Lenarcic B, Galesa K, Brzin J, Turk V, Yoza K, Ohtsubo K, Kramer KJ (2003) Effects of proteinase inhibitors on digestive proteinases and growth of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Comp Biochem Physiol C Tosicol Pharmacol 134:481–490

    Article  CAS  Google Scholar 

  • Pernas M, Sa′nchez-Monge R, Salcedo G (2000) Biotic and abiotic stress can induce cystatin expression in chestnut. FEBS Lett 467:206–210

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ (1990) Evolution of proteins of the cystatin superfamily. J Mol Evol 30:60–71

    Article  CAS  PubMed  Google Scholar 

  • Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11:431–444

    Article  CAS  PubMed  Google Scholar 

  • Turk V, Bode W (1991) The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285:213–219

    Article  CAS  PubMed  Google Scholar 

  • Turk B, Turk V, Turk D (1997) Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol Chem 378:141–150

    CAS  PubMed  Google Scholar 

  • Urwin PE, Lilley CJ, McPherson J, Atkinson J (1997) Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J 12:455–461

    Article  CAS  PubMed  Google Scholar 

  • Valdés-Rodríguez S, Guerrero-Rangel A, Melgoza-Villagómez C, Chagolla-López A, Delgado-Vargas F, Martínez-Gallardo N, Sánchez-Hernández C, Délano-Frier J (2007) Cloning of a cDNA encoding a cystatin from grain amaranth (Amaranthus hypochondriacus) showing a tissue-specific expression that is modified by germination and abiotic stress. Plant Physiol Biochem 45:790–798

    Article  PubMed  Google Scholar 

  • Vogler BK, Pittler MH, Ernst E (1999) The efficacy of ginseng. A systematic review of randomised clinical trials. Eur J Clin Pharmacol 55:567–575

    Article  CAS  PubMed  Google Scholar 

  • Waldron C, Wegrich LM, Merlo PAO, Walsh TA (1993) Characterization of a genomic sequence coding for potato multicystatin, an eight-domain cysteine proteinase inhibitor. Plant Mol Biol 23:801–812

    Article  CAS  PubMed  Google Scholar 

  • Wang KM, Kumar S, Cheng YS, Venkatagiri S, Yang AH, Yeh KW (2008) Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro. FEBS J 275:4980–4989

    Article  CAS  PubMed  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Google Scholar 

  • Yang AH, Yeh KW (2005) Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaohsiung No.1). Planta 221:493–501

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu S, Takano T (2008) Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol 68:131–143

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Botella MA, Subramanian L, Niu X, Nielsen SS, Bressan RA, Hasegawa PM (1996) Two wound inducible soybean cysteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog. Plant Physiol 111:1299–1306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by KGCMVP for Technology Development Program of Agriculture and Forestry, Ministry of Agriculture and Forestry, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Chun Yang.

Additional information

Communicated by B. Barna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, DY., Lee, O.R., Kim, YJ. et al. Molecular characterization of a cysteine proteinase inhibitor, PgCPI, from Panax ginseng C. A. Meyer. Acta Physiol Plant 32, 961–970 (2010). https://doi.org/10.1007/s11738-010-0485-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0485-y

Keywords

Navigation