Skip to main content
Log in

Long-term suspension cultures of cucumber (Cucumis sativus L.) with high embryogenic potential

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cucumber (Cucumis sativus L.) cytokinin-independent embryogenic cell suspension cultures were derived and maintained for more than 3.5 years without losing the embryogenic potential. The preparation and the characteristics of the cucumber embryogenic cell suspension possess many similarities to that of carrot. The cultures were induced from hypocotyl explants of in vitro grown cucumber plants in liquid MS media containing 2,4-dichlorophenoxyacetic acid as the sole growth regulator during 6 weeks and they contained a heterogeneous array of several different types of single cells and cell clusters (PEMs). The established cell suspensions were subcultured in 1-week interval, while the inoculation density was optimized to 2.0 × 105 cells ml−1 using cell viability as a marker. Somatic embryos were obtained after the transfer of the proembryogenic masses to a hormone-free semisolid MS medium with a frequency of 388 ± 57 somatic embryos per 1 ml of packed cell volume of the established cucumber embryogenic culture within 7 days. The frequency of normal somatic embryos with two cotyledons was found to be 78%. Such embryos possessed the potential of spontaneous maturation and the embryo conversion rates were 87%. The yield of normally growing plants was much higher compared with that previously described for cucumber systems. Somatic embryo-derived plants were successfully transferred to the greenhouse where they flowered and fruited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bergervoet JHW, van der Mark F, Custers JBM (1989) Organogenesis versus embryogenesis from long-term suspension cultures of cucumber (Cucumis sativus L.). Plant Cell Rep 8:116–119. doi:10.1007/BF00716853

    Article  Google Scholar 

  • Cade RM, Wehner TC, Blazich FA (1990) Somatic embryos derived from cotyledons of cucumber. J Am Soc Hortic Sci 115:691–696

    CAS  Google Scholar 

  • Callebaut A, Motte JC, de Cat W (1987) Substrate utilization by embryogenic and nonembryogenic cell suspension cultures of Cucumis sativus L. J Plant Physiol 127:271–280

    CAS  Google Scholar 

  • Chee PP, Tricoli DM (1988) Somatic embryogenesis and plant regeneration from cell suspension cultures of Cucumis sativus L. Plant Cell Rep 7:274–277. doi:10.1007/BF00272541

    Article  Google Scholar 

  • de Vries SC, Booij H, Meyerink P, Huisman G, Wilde HD, Thomas TL, van Kammen A (1988) Acquisition of embryogenic potential in carrot cell-suspension cultures. Planta 176:196–204. doi:10.1007/BF00392445

    Article  Google Scholar 

  • Debeaujon I, Branchard M (1993) Somatic embryogenesis in Cucurbitaceae. Plant Cell Tissue Organ Cult 34:91–100. doi:10.1007/BF00048468

    Article  Google Scholar 

  • Fehér A, Pasternak T, Ötvös K, Miskolczi P, Dudits D (2002) Induction of embryogenic competence in somatic plant cells: a review. Biologia 57:5–12

    Google Scholar 

  • Gawronska H, Burza W, Bolesta E, Malepszy S (2000) Zygotic and somatic embryos of cucumber (Cucumis sativus L.) substantially differ in their levels of abscisic acid. Plant Sci 157:129–137. doi:10.1016/S0168-9452(00)00277-6

    Article  PubMed  CAS  Google Scholar 

  • Halperin W (1966) Alternative morphogenetic events in cell suspensions. Am J Bot 53:443–453. doi:10.2307/2440343

    Article  Google Scholar 

  • Ibaraki Y, Matsushima R, Kurata K (2000) Analysis of morphological changes in carrot somatic embryogenesis by serial observation. Plant Cell Tissue Organ Cult 61:9–14. doi:10.1023/A:1006484023765

    Article  Google Scholar 

  • Jayasankar S, Gray DJ, Litz RE (1999) High-efficiency somatic embryogenesis and plant regeneration from suspension cultures of grapevine. Plant Cell Rep 18:533–537. doi:10.1007/s002990050617

    Article  CAS  Google Scholar 

  • Jiménez VM, Bangerth F (2001) Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol Plant 111:389–395. doi:10.1034/j.1399-3054.2001.1110317.x

    Article  PubMed  Google Scholar 

  • Kreuger M, van der Meer W, Postma E, Abbestee R, Raaijmakers N, van Holst G-J (1996) Genetically stable cell lines of cucumber for the large-scale production of diploid somatic embryos. Physiol Plant 97:303–310. doi:10.1034/j.1399-3054.1996.970213.x

    Article  CAS  Google Scholar 

  • Ladyman JAR, Girard B (1992) Cucumber somatic embryo development on various gelling agents and carbohydrate source. Hort Sci 27:164–165

    Google Scholar 

  • Ładyżyński M, Burza W, Malepszy S (2002) Relationship between somaclonal variation and type of culture in cucumber. Euphytica 125:349–356. doi:10.1023/A:1016017825907

    Article  Google Scholar 

  • Lee E-K, Cho D-Y, Soh W-Y (2001) Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep 20:408–415. doi:10.1007/s002990100338

    Article  CAS  Google Scholar 

  • Malepszy S, Solarek E (1986) In vitro culture of Cucumis sativus L. IV. conditions for cell suspension. Genetica Pol 27:249–253

    Google Scholar 

  • Mlejnek P, Kolman A (1999) Effects of three epoxides—ethylene oxide, propylene oxide and epichlorohydrin—on cell cycle progression and cell death in human diploid fibroblasts. Chem Biol Interact 117:219–239. doi:10.1016/S0009-2797(98)00109-4

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–495. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nakagawa H, Saijyo T, Yamauchi N, Shigyo M, Kako S, Ito A (2001) Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L.) expanded cotyledon. Sci Hortic (Amsterdam) 90:85–92. doi:10.1016/S0304-4238(00)00259-4

    Article  CAS  Google Scholar 

  • Nickle TC, Yeung EC (1994) Further evidence of a role for abscisic acid in conversion of somatic embryos of Daucus carota. In Vitro Cell Dev Plants 30P:96–103

    Article  CAS  Google Scholar 

  • Osuga K, Masuda H, Komamine A (1999) Synchronization of somatic embryogenesis at high frequency using carrot suspension cultures: model systems and application in plant development. Methods Cell Sci 21:129–140. doi:10.1023/A:1009884806166

    Article  PubMed  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819. doi:10.1104/pp.000810

    Article  PubMed  CAS  Google Scholar 

  • Pellinen T-P, Sorvari S, Tahvonen R, Sewón P (1997) Somatic embryogenesis in cucumber (Cucumis sativus L.) callus and suspension cultures. Angew Bot 71:116–118

    Google Scholar 

  • Raharjo SHT, Litz RE (2007) Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn.) from leaves of mature phase trees. Plant Cell Tissue Organ Cult 89:113–119. doi:10.1007/s11240-007-9219-2

    Article  Google Scholar 

  • Raharjo SHT, Punja ZK (1994) Regeneration of plantlets from embryogenic suspension cultures of cucumber (Cucumis sativus L. cv. Endeavor). In Vitro Cell Dev Plants 30P:16–20

    Article  Google Scholar 

  • Ribnicky DM, Nebojsa I, Cohen JD, Cooke TJ (1996) The effects of exogenous auxins on endogenous indole–3-acetic acid metabolism. Plant Physiol 112:549–558

    PubMed  CAS  Google Scholar 

  • Sarreb DA, Ładyżyński M, Malepszy S (2002) Comparison of triploid and diploid cucumber in long-term liquid cultures. Plant Cell Tissue Organ Cult 71:231–235. doi:10.1023/A:1020329720366

    Article  CAS  Google Scholar 

  • Schulze J, Balko C, Zellner B, Koprek T, Hänsch R, Nerlich A, Mendel RR (1995) Biolistic transformation of cucumber using embryogenic suspension cultures: long-term expression of reporter genes. Plant Sci 112:197–206. doi:10.1016/0168-9452(95)04261-X

    Article  CAS  Google Scholar 

  • Tabei Y, Nishio T, Kurihara K, Kanno T (1994) Selection of transformed callus in a liquid medium and regeneration of transgenic plants in cucumber (Cucumis sativus L.). Breed Sci 44:47–51

    Google Scholar 

  • Teixeira JB, Söndahl MR, Nakamura T, Kirby EG (1995) Establishment of oil palm cell suspensions and plant regeneration. Plant Cell Tissue Organ Cult 40:105–111. doi:10.1007/BF00037662

    Article  Google Scholar 

  • Toonen MAJ, Hendriks T, Schmidt EDL, Verhoeven HA, van Kammen A, de Vries SC (1994) Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking. Planta 194:565–572. doi:10.1007/BF00714471

    Article  CAS  Google Scholar 

  • Vengadesan G, Selvaraj N, Prem Anand R, Gaba V, Ganapathi A (2005) Ontogeny of somatic embryos in cucumber (Cucumis sativus L.). In Vitro Cell Dev Plants 41P:789–793

    Google Scholar 

  • Wróblewski T, Filipecki MK, Malepszy S (1995) Factors influencing cucumber (Cucumis sativus L.) somatic embryogenesis. I. The crucial role of pH and nitrogen in suspension culture. Acta Soc Bot Pol 64:223–231

    Google Scholar 

Download references

Acknowledgment

The presented work was funded by the Czech Ministry of Education, Project Nr. 10 MSM432100001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilém Reinöhl.

Additional information

Communicated by E. Lojkowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrýsková, L., Reinöhl, V., Klemš, M. et al. Long-term suspension cultures of cucumber (Cucumis sativus L.) with high embryogenic potential. Acta Physiol Plant 31, 675–681 (2009). https://doi.org/10.1007/s11738-009-0277-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0277-4

Keywords

Navigation