Acta Physiologiae Plantarum

, Volume 31, Issue 1, pp 155–162 | Cite as

Response of antioxidant activity to excess copper in two cultivars of Brassica campestris ssp. chinensis Makino

  • Ying Li
  • Yuping Song
  • Gongjun Shi
  • Jianjun Wang
  • Xilin Hou
Original Paper

Abstract

Changes in ascorbic acid content and antioxidant enzyme activities were investigated in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) leaves of ‘Wutacai’ and ‘Erqing’ exposed to excess copper (Cu). Cu treatment reduced the fresh weight of shoot and root by 57% and 46% in ‘Wutacai’, and 60 and 54% in ‘Erqing’, respectively. The accumulation of copper in leaves was higher in ‘Wutacai’ than that in ‘Erqing’. Compared to the control, ascorbic acid (AsA) contents were significantly decreased after copper treatment in both cultivars, while they were higher in ‘Wutacai’ than in ‘Erqing’, which may explain the higher copper-tolerance of ‘Wutacai’ with higher copper accumulation. The higher AsA contents of ‘Wutacai’ resulted from their lower activities of degrading enzymes, such as ascorbate oxydase (AAO) and ascorbate peroxidase (APX), as well as the increasing activity of dehydroascorbate reductase (DHAR) after copper treatment compared with ‘Erqing’. Copper stimulated superoxide dismutase (SOD) activity in both cultivars, but for catalase (CAT), there was little difference between both cultivars. Peroxidases (POD) activity was decreased after copper treatment in ‘Erqing’, while in ‘Wutacai’, it was significantly increased at 14 days, and POD activity was higher in ‘Wutacai’ than that in ‘Erqing’ at 21 and 28 days. Therefore, the induced increasing activity of POD in ‘Wutacai’ also played an important role in its copper tolerance.

Keywords

Copper stress Ascorbic acid l-galactono-1,4-lactone dehydrogenase Antioxidant enzymes Brassica campestris ssp. chinensis Makino 

References

  1. Abassi NA, Kushad MM, Endress AG (1998) Active oxygen scavenging enzymes activities in developing apple flowers and fruits. Sci Hortic (Amsterdam) 74:183–184. doi:10.1016/S0304-4238(98)00077-6 CrossRefGoogle Scholar
  2. Alaoui-Sossé B, Genet P, Vinit-Dunand F, Toussaint ML, Epron D, Badot PM (2004) Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166:1213–1218. doi:10.1016/j.plantsci.2003.12.032 CrossRefGoogle Scholar
  3. An HM, Chen LG, Fan WG, Liu QL (2005) Relationship between ascorbic acid and related enzyme activities in fruit of Rosa roxburghii Tratt. J Plant Physio Mol Biol 31(4):431–436Google Scholar
  4. Angelini R, Frederico R (1989) Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. J Plant Physiol 135:212–217Google Scholar
  5. Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C (1981) A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-1, 10-phenanthroline. Agric Biol Chem 45(5):1289–1290Google Scholar
  6. Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241. doi:10.1111/j.1399-3054.1992.tb04728.x CrossRefGoogle Scholar
  7. Babu TS, Marder JB, Tripiranthakam S, Dixon DG, Greenberg BM (2001) Synergistic effects of a photooxidized polycyclic aromatic hydrocarbon and copper on photosynthesis and plant growth: evidence that in vivo formation of reactive oxygen species is a mechanism of copper toxicity. Environ Toxicol Chem 20:1351–1358. doi :10.1897/1551-5028(2001)020<1351:SEOAPP>2.0.CO;2Google Scholar
  8. Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol 43:83–116. doi:10.1146/annurev.pp.43.060192.000503 CrossRefGoogle Scholar
  9. Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227PubMedCrossRefGoogle Scholar
  10. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605PubMedGoogle Scholar
  11. Chaoui A, Ferjani EE (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. C R Biologies 328:23–31. doi:10.1016/j.crvi.2004.10.001 PubMedCrossRefGoogle Scholar
  12. Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530. doi:10.1073/pnas.0635176100 PubMedCrossRefGoogle Scholar
  13. Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266. doi:10.1016/j.envexpbot.2004.02.004 CrossRefGoogle Scholar
  14. Detullio MC, Liso R, Arrigoni O (2004) Ascorbic acid oxidase: an enzyme in search of a role. Biol Plant 48(2):161–166. doi:10.1023/B:BIOP.0000033439.34635.a6 CrossRefGoogle Scholar
  15. Fernando CL, Henrques FS (1992) Copper toxicity in rice: diagnositic criteria and effect on tissue Mn and Fe. Soil Sci 154(2):130–135CrossRefGoogle Scholar
  16. Foyer CH, Looez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254. doi:10.1111/j.1399-3054.1997.tb04780.x CrossRefGoogle Scholar
  17. Guo SR (2003) Soilless cultivation science. China Agricultural Press, Beijing, pp 111–115Google Scholar
  18. Kumar GNM, Knowles NR (1993) Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seedtubers. Plant Physiol 102:115–124PubMedGoogle Scholar
  19. Li M, Hu CW, Zhu Q, Chen L, Kong ZM, Liu ZL (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572. doi:10.1016/j.chemosphere.2005.06.029 PubMedCrossRefGoogle Scholar
  20. Lidon FC, Henriques FS (1992) Copper toxicity in rice: diagnositic criteria and effect on tissue Mn and Fe. Soil Sci 154(2):130–1351. doi:10.1097/00010694-199208000-00006 CrossRefGoogle Scholar
  21. Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797–802. doi:10.1016/j.plantsci.2004.10.012 CrossRefGoogle Scholar
  22. Lönnerdal B (1998) Copper nutrition during infancy and childhood. Am J Clin Nutr 67:1046–1053Google Scholar
  23. Mazhoudi S, Chaoui A, Ghorbal MH, Ferjani EE (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Sci 127:129–137. doi:10.1016/S0168-9452(97)00116-7 CrossRefGoogle Scholar
  24. Monnet F, Bordas F, Deluchat V, Baudu M (2006) Toxicity of copper excess on the lichen Dermatocarpon luridum: antioxidant enzyme activities. Chemosphere 65:1806–1813. doi:10.1016/j.chemosphere.2006.04.022 PubMedCrossRefGoogle Scholar
  25. Morelli E, Scarano G (2004) Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Sci 167:289–296. doi:10.1016/j.plantsci.2004.04.001 CrossRefGoogle Scholar
  26. Nickel RS, Cunningham BA (1969) Improved peroxidase assay method using Ieuco 2, 3, 6-trichlcroindophenol and application to comparative measurements of peroxidase catalysis. Ann Biochem 27:292–299. doi:10.1016/0003-2697(69)90035-9 CrossRefGoogle Scholar
  27. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249 PubMedCrossRefGoogle Scholar
  28. Oberbacher MF, Vines HM (1963) Spectrophotometric assay of ascorbic acid oxidase. Nature 197:1203–1204. doi:10.1038/1971203a0 PubMedCrossRefGoogle Scholar
  29. Padh H (1990) Cellular functions of ascorbic acid. Biochem Cell Biol 68:1166–1173PubMedCrossRefGoogle Scholar
  30. Palma JM, Gómez M, Yáńez J, Del Río LA (1987) Increased levels of peroxisomal active oxygen-related enzymes in copper-tolerant pea plants. Plant Physiol 85:570–574PubMedCrossRefGoogle Scholar
  31. Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ et al (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951. doi:10.1105/tpc.010538 PubMedCrossRefGoogle Scholar
  32. Rama DS, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138(2):157–165. doi:10.1016/S0168-9452(98)00161-7 CrossRefGoogle Scholar
  33. Rao KVM, Sresty TVS (2000) Antioxidant parameters in the seedlings of pigeon pea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128. doi:10.1016/S0168-9452(00)00273-9 CrossRefGoogle Scholar
  34. Rouso PA, Harrison HC (1987) Identification of differential responses of cabbage cultivars to copper toxicity in solution culture. J Am Soc Hortic Sci 12(6):928–931Google Scholar
  35. Scheinfeld N, Dahdah MJ, Scher R (2007) Vitamins and minerals: their role in nail health and disease. J Drugs Dermatol 6(8):782–787PubMedGoogle Scholar
  36. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365. doi:10.1093/jexbot/53.372.1351 PubMedCrossRefGoogle Scholar
  37. Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467. doi:10.1146/annurev.arplant.52.1.437 PubMedCrossRefGoogle Scholar
  38. Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415. doi:10.1016/j.aquatox.2006.10.006 PubMedCrossRefGoogle Scholar
  39. Stasolla C, Yeung EC (2001) Ascorbic acid metabolism during white spruce somatic embryo maturation and germination. Physiol Plant 111:196–205. doi:10.1034/j.1399-3054.2001.1110210.x CrossRefGoogle Scholar
  40. Tabata K, Obak Suzuki K, Esaka M (2001) Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1, 4-lactone dehydrogenase. Plant J 27(2):139–148. doi:10.1046/j.1365-313x.2001.01074.x PubMedCrossRefGoogle Scholar
  41. Takahashi MA, Asada K (1983) Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophys 226:558–566. doi:10.1016/0003-9861(83)90325-9 PubMedCrossRefGoogle Scholar
  42. Teisseire H, Guy V (2000) Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Sci 153:65–72. doi:10.1016/S0168-9452(99)00257-5 CrossRefGoogle Scholar
  43. Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577. doi:10.1016/j.tplants.2004.10.002 PubMedCrossRefGoogle Scholar
  44. Washko PW, Welch RW, Dhariwal KR, Wang Y, Levine M (1992) Ascorbic acid and dehydroascorbic acid analyses in biological samples. Anal Biochem 204:1–14. doi:10.1016/0003-2697(92)90131-P PubMedCrossRefGoogle Scholar
  45. Zhang YP, Zhang YL, Zhou YH, Yu JQ (2007) Adaptation of cucurbit species to changes in substrate temperature: root growth, antioxidants, and peroxidation. J Plant Biol 50(5):527–532Google Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2008

Authors and Affiliations

  • Ying Li
    • 1
    • 2
  • Yuping Song
    • 1
  • Gongjun Shi
    • 1
  • Jianjun Wang
    • 1
  • Xilin Hou
    • 1
    • 2
  1. 1.Horticultural DepartmentNanjing Agricultural UniversityNanjingChina
  2. 2.State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjingChina

Personalised recommendations