Skip to main content
Log in

Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a small, ubiquitous molecule, whose physiological function in plants has recently been widely investigated. It seems that one of its pivotal properties is the antioxidant capacity, enabling plants to alleviate the effects of the oxidized stress. In this work we investigated the role of NO in soybean (Glycine max L. Cv. Navico) cell suspension treated with cadmium. Sodium nitroprusside (SNP), nitric oxide donor, markedly decreased the negative influence of Cd2+ on cell growth. It was also found to stimulate superoxide dismutase (SOD, EC 1.15.1.1). Using specific fluorochromes — dihydroethidine (DHE) and 2′,7′- dichlorofluorescein (DCFH-DA) it was shown that NO was very effective in reducing the level of superoxide anion (O ·−2 ) and hydrogen peroxide, respectively. Furthermore, as evaluated by means of NO specific fluorochrome 4,5-diaminofluorescein diacetate (DAF-2DA), increased production of NO was found in Cd-treated cells. In cadmium-stressed cells SNP lowered the level of oxidized proteins.

Our results suggest that the antioxidant properties of nitric oxide in Cd-treated soybean cells rely mainly on its ability to direct scavenging of ROS and stimulation of the antioxidant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beligni MV, Lamattina L. 1999a. Is nitric oxide toxic or protective? Trends Plant Sci. 4: 299–300.

    Article  PubMed  Google Scholar 

  • Beligni MV, Lamattina L. 1999b. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues, Planta 208: 337–344.

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L. 2002. Nitric oxide interferes with plant photo-oxidized stress by detoxifying reactive oxygen species. Plant Cell Environ. 25: 737–743.

    Article  CAS  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL. 2002. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol. 129: 1642–1650.

    Article  PubMed  CAS  Google Scholar 

  • Caro A, Puntarulo S. 1998. Nitric oxide decreases superoxide anion generation by microsomes from soybean emryonic axes. Physiol. Plant. 104: 357–364.

    Article  CAS  Google Scholar 

  • Cheng F, Hsu SY, Kao CH. 2002. Nitric oxide counteracts the senescence of detached rice leaves induced by dehydration and polyethylene glycol but not by sorbitol. Plant Growth Regul. 38: 265–272.

    Article  CAS  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig D. 2000. Nitric oxide inhibition of tobacco catalase and ascrobate peroxidase. MPMI 13: 1380–1384.

    PubMed  CAS  Google Scholar 

  • Crawford NM, Guo FQ. 2005. New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci. 10: 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR. 1997. Studies on cadmium toxicity in plants: a review. Environ. Pollution 98: 29–36.

    Article  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. PNAS 98: 13454–13459.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira RR, Fornazier RF, Vitoria AP, Lea PJ, Azevedo RA. 2002. Changes in antioxidant enzyme activities in soybean under cadmium stress. J. Plant Nutr. 25: 327–342.

    Article  CAS  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D. 2003. Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ. 26: 1851–1862.

    Article  CAS  Google Scholar 

  • Gwóźdź EA, Przymusiński R, Rucińska R, Deckert J. 1997. Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol. Plant. 19: 459–465.

    Article  Google Scholar 

  • Herbette S, Lenne C, Tourvieille D, Drevet JR, Roeckel-Drevet P. 2003. Transcripts of sunflower antioxidant scavengers of the SOD and GPX families accumulate differentially in response to downy mildew infection, phytohormones, reactive oxygen species, nitric oxide, protein kinase and phosphatase inhibitors. Physiol. Plant. 119: 418–428.

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH. 2004. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul. 42: 227–238.

    Article  CAS  Google Scholar 

  • Huang X, Rad U, Durner J. 2002. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215: 914–923.

    Article  PubMed  CAS  Google Scholar 

  • Hung KT, Chang CJ, Kao CH. 2002. Paraquat toxicity is reduced by nitric oxide in rice leaves. J. Plant. Physiol. 159: 159–166.

    Article  CAS  Google Scholar 

  • Kopyra M, Gwóźdź EA. 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol. Biochem. 41: 1011–1017.

    Article  CAS  Google Scholar 

  • Kopyra M, Gwóźdź EA. 2004. The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiol. Plant. 26: 459–472.

    Article  CAS  Google Scholar 

  • Laspina N.V., Groppa M.D., Tomaro M.L., Benavides M.P. 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidized stress. Plant Sci. 169: 323–330.

    Article  CAS  Google Scholar 

  • Levine RL, Wilians JA, Stadman ER, Shacter E. 1994. Carbonyl assays for determination of oxidizedly modified proteins. Methods in Enzymology 233: 346–363.

    Article  PubMed  CAS  Google Scholar 

  • Mills DR, Lee JM. 1996. A simple, accurate method for determining wet and dry weight concentrations of plant cell suspension cultures using centrifuge tubes. Plant Cell Rep. 15: 634–636.

    Article  CAS  Google Scholar 

  • Mittler R, Zilinskas BA. 1993. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal. Biochem. 212: 540–546.

    Article  PubMed  CAS  Google Scholar 

  • Murgia I, Pinto MC, Delledonne M, Soave C, Gara L. 2004. Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. J. Plant Physiol. 161: 777–783.

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT. 2003. Nitric oxide signalling in plants. New Phytologist 159: 11–35.

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gomez M, del Rio LA, Sandalio LM. 2002. Cadmium causes the oxidized modification of proteins in pea plants. Plant Cell Environ. 25: 677–686.

    Article  CAS  Google Scholar 

  • Rucińska R, Waplak S, Gwóźdź EA. 1999. Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol. Biochem. 31: 187–194.

    Article  Google Scholar 

  • Schopfer P, Plachy C, Frahry G. 2001. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin and abscisic acid. Plant Physiol. 125: 1591–1602.

    Article  PubMed  CAS  Google Scholar 

  • Sen Gupta A, Webb RP, Holaday AS, Allen RD. 1993. Overexpression of superoxide dismutase protects plants from oxidized stress. Plant Physiol. 103: 1067–1073.

    CAS  Google Scholar 

  • Seregélyes C, Barna B, Hennig J, Konopka D, Pasternak TP, Lukács N, Fehér A, Horváth GV, Dudits D. 2003. Phytoglobins can interfere with nitric oxide functions during plant growth and pathogenic responses: a transgenic approach. Plant Sci. 165: 541–550.

    Article  CAS  Google Scholar 

  • Sobkowiak R, Deckert J. 2003. Cadmium-induced changes in growth and cell cycle gene expression in suspension-culture cells of soybean. Plant Physiol. Biochem. 41: 767–772.

    Article  CAS  Google Scholar 

  • Sobkowiak R, Rymer K, Rucińska R, Deckert J. 2004. Cadmium-induced changes in antioxidant enzymes in suspension culture of soybean cells. Acta Biochimica Polonica 51: 219–222.

    PubMed  CAS  Google Scholar 

  • Sobkowiak R, Deckert J. 2004. The effect of cadmium on cell cycle control in suspension culture cells of soybean. Acta Physiol. Plant. 26: 335–344.

    Article  CAS  Google Scholar 

  • Stroiński A, 1999. Some physiological and biological aspects of plant resistance to cadmium effect on antioxidized system. Acta Physiol. Plant. 21: 175–188.

    Article  Google Scholar 

  • di Toppi L Sanità, Gabbrielli R. 1999. Response to cadmium in higher plants. Environ. Exp. Bot. 41: 105–130.

    Article  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H. 2002. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol. 128: 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Zornoza P, Vázquez S, Esteban E, Fernández-Pascual M, Carpena R. 2002. Cadmium stress in nodulated white lupin: strategies to avoid toxicity. Plant Physiol. Biochem. 40: 1003–1009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Gwóźdź.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopyra, M., Stachoń-Wilk, M. & Gwóźdź, E.A. Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension. Acta Physiol Plant 28, 525–536 (2006). https://doi.org/10.1007/s11738-006-0048-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-006-0048-4

Key words

Navigation