Skip to main content
Log in

Pleiotropic effect of flavonoid biosynthesis manipulation in transgenic potato plants

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Three approaches were successfully used to manipulate content of flavonoids in transgenic plants. Overexpressing either the adaptor 14-3-3 protein or genes coding the key enzymes of the flavonoid biosynthesis pathway resulted in a significant increase in the compound content in potato tuber epidermis. The opposite effect was observed in transgenic plants in which these proteins were repressed; this strongly supports the view that the gene construct determines transgenic plant features. The most effective construct was, however, the one containing single dihydroflavonol reductase (DFR) gene in sense orientation. In all cases the increase in flavonoid content resulted in the expected enhancement of the antioxidant capacity of tuber extract. At the biochemical level a decrease in the starch content in transgenic plant overexpressing proteins regulating flavonoid biosynthesis was detected. In the case of glucosyl transferase (GT) gene overexpression, the content of phenolic compounds remained at the control level, however, the antioxidant capacity of tuber extracts significantly decreased. The GT plants grew faster and were more resistant to pathogen attacks, the tuber yield was significantly higher than that of nontransformants. Thus it is speculated that it is the chemical structure and degree of glucosylation of flavonoids rather than their quantity which determines transgenic plant features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braun E.L., Matulnik T.J., Dias A.P., Grotewold E. 2001. Transcription factors and metabolic engineering: novel applications for ancient tools. Recent. Adv. Phytochem. 35: 79–109.

    Article  CAS  Google Scholar 

  • Campbell J.A., Davies G.J., Bulone V., Henrissat B. 1997. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326: 929–939.

    PubMed  CAS  Google Scholar 

  • Deblaere R., Bytebier B., de Greve H., Deboeck F., Schell J., Van Montagu M., Leemans J. 1985. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucl. Acids Res. 13: 4777–4788.

    Article  PubMed  CAS  Google Scholar 

  • De Jong W.S., De Jong D.M., De Jong H., Kalazich J., Bodis M. 2003. An allele of dihydroflavonol 4-reductase associated with the ability to produce red anthocyanin pigments in potato (Solanum tuberosum L.). Theor. Appl. Genet. 107:1375–1383.

    Article  PubMed  CAS  Google Scholar 

  • Di Pietro A., Conseila G., Pérez-Victoria J.M., Dayana G., Baubichon-Cortaya H., Trompiera D., Steinfels E. 2002. Modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cell. Mol. Life Sci. 59: 307–322.

    Article  PubMed  Google Scholar 

  • Finnie C., Borch J., Collinge D.B. 1999. 14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Mol. Biol. 40: 545–554.

    Article  PubMed  CAS  Google Scholar 

  • Foreman J., Demidchik V., Bothwell, J.H.F., Mylona P., Miedema H., Torres M.A., Linstead P., Costa S., Brownlee C., Jones J.D.G., Davies J.M., Dolan L. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442–446.

    Article  PubMed  CAS  Google Scholar 

  • Fu H., Subramanian R.R., Masters S.C. 2000. 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617–647.

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E. 2003. Manipulating the accumulation of phenolics in maize cultured cells using transcription factors. Biochem.l Engin. J., 14: 207–216.

    Article  CAS  Google Scholar 

  • Hahlbrock K., Scheel D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 347–367.

    Article  CAS  Google Scholar 

  • Harborne J.B., Williams C.A. 2000. Advances in Favonoid research since 1992. Phytochemistry 55: 481–504.

    Article  PubMed  CAS  Google Scholar 

  • Hertog M.G.L., Kromhout D., Aravanis C., Blackburn H., Buzina R., Fidanza F., Giampaoli S., Jansen A., Menotti A., Nedeljkovic S., Pekkarinen M., Simic B.S., Toshima H., Feskens E.J.M., Hollman P.C.H., Katan M.B. 1995. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med. 155: 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Hertog M.G.L., Hollman P.C.H., Katan M.B. 1992. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands, J. Agric. Food Chem., 40: 2379–2383.

    Article  CAS  Google Scholar 

  • Jacobs M., Rubery P.H. 1988. Naturally occurring auxin transport regulators. Science 24: 346–349

    Article  Google Scholar 

  • Keli S.O., Hertog M.G.L., Feskens E.J.M., Kromhout D. 1996. Flavonoids, antioxidant vitamins and risk of stroke. The Zutphen study. Arch. Intern. Med. 156: 637–642.

    Article  PubMed  CAS  Google Scholar 

  • Krasowska A., Rosiak D., Szkapiak K., Łukaszewicz M. 2000. Chemiluminescence detection of peroxyl radicals and comparison of antioxidant activity of phenolic compounds. Curr. Topics Biophys. 24: 89–95.

    CAS  Google Scholar 

  • Krasowska A., Rosiak D., Szkapiak K., O wi cimska M., Witek S., Łukaszewicz M. 2001. The antioxidant activity of BHT and new phenolic compounds PYA and PPA measured by chemiluminescence. Cell. Mol. Biol. Lett. 6: 71–81.

    PubMed  CAS  Google Scholar 

  • Lim E.-K., Doucet C.J., Li Y., Elias L., Worrall D., Spencer S.P., Ross J., Bowles D.J. 2002. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 277: 586–592.

    Article  PubMed  CAS  Google Scholar 

  • Łukaszewicz M., Matysiak-Kata I., Aksamit A., Oszmia ski J., Szopa J. 2002. 14-3-3 Protein regulation of the antioxidant capacity of transgenic potato tubers. Plant Sci. 163: 125–130.

    Article  Google Scholar 

  • Łukaszewicz M., Matysiak-Kata I., Skała J., Fecka I., Cisowski W., Szopa J. 2004. Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J. Agric. Food Chem. 52: 1526–1533.

    Article  PubMed  CAS  Google Scholar 

  • Moore B.W., Perez V.J. 1967. Specific acidic proteins of the nervous system. In: Physiological and Biochemical Aspects of Nervous Integration. Prentice-Hall ed. (Calson, F.D., ed.), pp. 343–359.

  • Murphy A., Peer W.A., Taiz L. 2000. Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211: 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Nugroho L.H., Verberne M.C., Verpoorte R. 2002. Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants. Plant Physiol. Biochem. 40: 755–760.

    Article  CAS  Google Scholar 

  • Overmyer K., Brosche M., Jaakko Kangasjarvi J. 2003. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8: 335–342.

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans A.C., Miller N.J., Paganga G. 1997. Antioxidant properties of phenolic compounds. New Trend Plant Sci. Rev. 2: 152–159.

    Article  Google Scholar 

  • Roberts M. R. 2000. Regulatory 14-3-3 protein-protein interactions in plant cells. Curr. Opin. Plant Biol. 3: 400–405.

    Article  PubMed  CAS  Google Scholar 

  • Rorat T., Grygorowicz W.J., Berbezy P., Irzykowski W. 1998. Isolation and expression of cold specific genes in potato (Solanum sogarandinum). Plant Sci. 133: 57–67.

    Article  CAS  Google Scholar 

  • Shintani D., DellaPenna D. 1998 Elevating the Vitamin E content of plants through metabolic engineering. Science 282: 2098–2100.

    Article  PubMed  CAS  Google Scholar 

  • Stobiecki M., Matysiak-Kata I., Fra ski R., Skała J., Szopa J. 2003. Monitoring changes in anthocyanin and steroid alkaloid glycoside content in lines of transgenic potato plants using liquid chromatography/mass spectrometry. Phytochemistry 62: 959–969.

    Article  PubMed  CAS  Google Scholar 

  • Sun A.Y., Simonyi A., Sun G.Y. 2002. The “french paradox” and beyond: neuroprotective effects of polyphenols. Free Radical Biol. Med. 32: 314.318.

    Article  CAS  Google Scholar 

  • Szopa J. 2002. Transgenic 14-3-3 isoforms in plants: the metabolite profiling of repressed 14-3-3 protein synthesis in transgenic potato plants. Biochem. Soc. Trans. 30: 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Szopa J., Łukaszewicz M., Korobczak A., Aksamit A., Kwiatkowska D. 2003. Structural organisation, expression, and promoter analysis of a 16R isoform of 14-3-3 protein gene from potato. Plant Pysiol. Biochem. 41: 417–423.

    Article  CAS  Google Scholar 

  • Szopa J., Wróbel M., Matysiak-Kata I., wi drych A. 2001. The metabolic profile of the 14-3-3 repressed transgenic potato tubers. Plant Sci. 161: 1075–1082.

    Article  CAS  Google Scholar 

  • Woo H-H., Faull K.F., Hirsch A.M., Hawes M.C. 2003. Altered Life Cycle in Arabidopsis Plants Expressing PsUGT1, a UDP-Glucuronosyltransferase-Encoding Gene from Pea. Plant Physiol. 133: 538–548.

    Article  PubMed  CAS  Google Scholar 

  • Vogt T., Jones P. 2000 Glycosyltransferases in plant natural product synthesis-characterization of a supergene family. Trends Plant Sci. 5: 380–386.

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte R., van der Heijden R., ten Hoopen H.J.G., Memelink J. 1999. Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol. Lett. 21: 467–479.

    Article  CAS  Google Scholar 

  • Verhoeyen M.E., Bovy A., Collins G., Muir S., Robinson S., de Vos C.H.R., Colliver S. 2002. Increasing antioxidant levels in tomatoes through modification of the favonoid biosynthetic pathway. J. Exp. Bot. 53: 2099–2106.

    Article  PubMed  CAS  Google Scholar 

  • Wilczy ski G., Kulma A., Szopa J. 1998. The expression of 14-3-3 isoforms in potato is developmentaly regulated. J. Plant Physiol. 153: 118–126.

    Google Scholar 

  • Weisshaar B., Jenkins G.I. 1998. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1: 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Ye X., Al-Babili S., Kloti A., Zhang J., Lucca P., Beyer P., Potrykus I. 2000. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H., Wang J., Goodman H. M. 1997a. An Arabidopsis gene encoding a putative 14-3-3-interacting protein, caffeic acid/5-hydroxyferulic acid O-methyltransferase. Biochim. Biophys. Acta 1353: 199–202.

    PubMed  CAS  Google Scholar 

  • Zhang H., Wang J., Nickel U., Allen R. D., Goodman H.M. 1997b. Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol. Biol. 34: 967–971.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Łukaszewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łukaszewicz, M., Szopa, J. Pleiotropic effect of flavonoid biosynthesis manipulation in transgenic potato plants. Acta Physiol Plant 27, 221–228 (2005). https://doi.org/10.1007/s11738-005-0026-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0026-2

Key words

Navigation