Skip to main content
Log in

Evaluation of effectiveness of the methods for isolation of cell wall polysaccharides during cell elongation in Phaseolus vulgaris seedlings

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Phaseolus vulgaris seedlings were grown in light with or without chromium. Changes in cell wall components i.e. pectic polysaccharides and xyloglucan contents were looked into during cell elongation, by two different methods in order to find the most suitable method for isolation of cell wall polysaccharides. The first method was short and easy. It made use of organic solvents for preparation of cell wall components and ammonium oxalate and oxalic acid buffer and high temperature for extracting pectic polysaccharides; 0.7 M and 4.3 M KOH was used for extracting low and high molecular weight xyloglucans respectively. On the other hand, in the second method, cell wall components were fractionated by sequential treatments with different inorganic solvents, chelating agents, sodium lauryl sulphate, etc. KOH (1 M and 4 M) was used for extracting xyloglucans. The advantage of using the second method for extracting cell wall polysaccharides especially pectic polysaccharides is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDTA:

ethylene diammine tetra acetic acid

DMSO:

dimethyl sulphoxide

SLS:

sodium lauryl sulphate

References

  • Bagatharia S.B., Chanda S.V. 1998. Modification of cell wall polysaccharides during cell elongation in Phaseolus vulgaris hypocotyls. Acta Physiol. Plant. 20: 15–18.

    CAS  Google Scholar 

  • Bauer W.D., Talmadge K.W., Keegstra K., Albersheim P. 1973. The structure of plant cell walls II. The hemicellulose of the walls of suspension-cultured sycamore cells. Plant Physiol. 51: 174–187.

    PubMed  CAS  Google Scholar 

  • Brett C., Waldron K. 1991. In Physiology and Biochemistry of Plant Cell Walls. Topics in Plant Physiology II Eds. Black M., Chapman J. Unwin Hyman London Topics in Plant Physiology.

  • Chanda S.V., Bapodara C., Singh Y.D. 1995. Degradation of xyloglucan and pectic polysaccharides during cell elongation in Phaseolus vulgaris hypocotyls. Acta Plant. Physiol. 17: 349–356.

    CAS  Google Scholar 

  • Doddemma H. and Telkamp G.P. 1979. Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake of reduction of nitrate. II. Kinetics. Physiol. Plant. 45: 332–338.

    Article  Google Scholar 

  • Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. 1956. Colometric method for determination of sugars and related substances. Anal. Chem. 28:350–356.

    Article  CAS  Google Scholar 

  • Fry S.C. 1989. The structure and functions of xyloglucan. J. Exp. Bot. 40: 1–11.

    Article  CAS  Google Scholar 

  • Gokani S.J., Thaker V.S. 2000. Physiological and biochemical changes associated with cotton fiber development. VIII. Wall components. Acta Physiol. Plant. 22: 403–408.

    CAS  Google Scholar 

  • Hayashi T. 1989. Xyloglucan in the primary cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 139–168.

    Article  CAS  Google Scholar 

  • Hoson T., Masuda Y., Sone Y., Misaki A. 1991. Xyloglucan antibodies inhibit auxin-induced elongation and cell wall loosening of azuki bean epicotyls but not of oat coleoptiles. Plant Physiol. 96: 551–557.

    PubMed  CAS  Google Scholar 

  • Hoson T. 1990. Effect of auxin on autolysis of cell walls in azuki bean epicotyls. Plant Cell Physiol. 31: 281–287.

    CAS  Google Scholar 

  • Inouhe M., Yamamoto R., Masuda Y. 1984. Auxin induced changes in the molecular weight distribution of cell wall xyloglucans in Avena coleoptiles. Plant Cell Physiol. 25: 1341–1351.

    CAS  Google Scholar 

  • Katsu N, Kamisaka S. 1983. Quantitative and qualitative changes in cell wall polysaccharides in relation to growth and cell wall loosening: Lactuca sativa hypocotyls. Physiol. Plant. 58: 33–40.

    Article  CAS  Google Scholar 

  • Kooiman P. 1960. A method for the detrmination of amyloid in plant seeds. Recl. Trav. Chim. Pays. Bas. 79: 675–678.

    CAS  Google Scholar 

  • Labavitch J.M., Ray P.M. 1974. Relationship between promotion of xyloglucan metabolism and induction of elongation by indoleacetic acid. Plant Physiol. 54: 499–502.

    PubMed  CAS  Google Scholar 

  • McNeil M., Darvill A.G., Fry S..C., Albersheim P. 1984. Structure and function of the primary cell walls of plants. Annu. Rev. Biochem. 53: 625–663.

    Article  PubMed  CAS  Google Scholar 

  • McQueen_Mason S. 1997. Plant cell walls and the control of growth. Biochem. Soc. Trans. 25: 204–214.

    PubMed  CAS  Google Scholar 

  • Nishitani K., Masuda Y. 1981. Auxin induced changes in the cell wall structure: change in the sugar composition intrinsic viscosity and molecular weight distribution of matrix polysaccharides of the epicotyl cell wall of Vigna angularis. Physiol. Plant. 52: 482–494.

    Article  CAS  Google Scholar 

  • Nishitani K., Masuda Y. 1983. Auxin induced changes in the cell wall xyloglucans: effect of auxin on the two different subfractions of xyloglucan in the epicotyl cell wall of Vigna angularis. Plant Cell Physiol. 24: 345–355.

    CAS  Google Scholar 

  • Roberts K. 1990. Structures at the plant surface. Curr. Opinion Cell Biol. 2: 920–928.

    Article  PubMed  CAS  Google Scholar 

  • Selvendran R.R., Du Pont M.S. 1984. In: Developments in food analysis techniques — 3, Ed. R.D. King pp 1–68 London and New York, Elsevier Applied Science Publishers

    Google Scholar 

  • Taiz L. 1984. Plant cell expansion:relation of cell wall mechanical properties. Annu. Rev. Plant Physiol. 35: 585–657.

    Article  CAS  Google Scholar 

  • Terry M.E., Jones R.I., Bonner B.A. 1981. Soluble cell wall polysaccharides from pea stems by centrifugation. I. Effect of auxin. Plant Physiol. 68: 531–537.

    Article  PubMed  CAS  Google Scholar 

  • Vincken J.P., York W.S., Beldman G., Voragen G.J. 1997. Two general branching pattern of xyloglucan XXXYG and XXXYGG. Plant Physiol. 114: 9–13.

    Article  PubMed  CAS  Google Scholar 

  • Wada S. and Ray P.M. 1978. Matrix polysaccharides of oat coleoptile cell walls. Phytochemistry 17: 923–931.

    Article  CAS  Google Scholar 

  • Wakabayashi K., Hoson T., Kamisaka S. 1997. Changes in amounts and molecular mass distribution of cell wall polysaccharides of wheat (Triticum aestivum L.) coleoptiles under water stress. Plant Physiol. 151: 33–40.

    CAS  Google Scholar 

  • Whitney S.E.C., Gothard M.G.E., Mitchell J.T., Gidley M.J. 1999. Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol 121: 657–664.

    Article  CAS  PubMed  Google Scholar 

  • Zhong H., Lauchli A. 1993. Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. J. Exp. Bot. 44: 773–778.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanda, S.V. Evaluation of effectiveness of the methods for isolation of cell wall polysaccharides during cell elongation in Phaseolus vulgaris seedlings. Acta Physiol Plant 27, 371–378 (2005). https://doi.org/10.1007/s11738-005-0014-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0014-6

Key words

Navigation