Skip to main content

Isolation of the Cell Wall

  • Protocol
  • First Online:
Isolation of Plant Organelles and Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1511))

Abstract

This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90–95 % in mass) and of proteins (5–10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants, consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  2. Boudet A, Kajita S, Grima-Pettenati J et al (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8:576–581

    Article  CAS  PubMed  Google Scholar 

  3. Albenne C, Canut H, Hoffmann L et al (2014) Plant cell wall proteins: a large body of data, but what about runaways? Proteomes 2:224–242

    Article  CAS  Google Scholar 

  4. Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci 4:111

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rose JKC, Lee S-J (2010) Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol Biochem 153:433–436

    CAS  Google Scholar 

  6. San Clemente H, Jamet E (2015) WallProtDB, a database resource for plant cell wall proteomics. Plant Methods 11:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carpita N, McCann M (2000) In: Buchanan B, Wilhelm G, Jones J (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, IL, The Cell Wall. pp 52–108

    Google Scholar 

  8. Pogorelko G, Lionetti V, Bellincampi D et al (2013) Cell wall integrity: targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. Plant Signal Behav 8:e25435.

    Google Scholar 

  9. Miedes E, Vanholme R, Boerjan W et al (2014) The role of the secondary cell wall in plant resistance to pathogens. Front Plant Sci 5:538

    Article  Google Scholar 

  10. Tan L, Eberhard S, Pattathil S et al (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hijazi M, Velasquez S, Jamet E et al (2014) An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. Front Plant Sci 5:395

    Article  PubMed  PubMed Central  Google Scholar 

  12. Feiz L, Irshad M, Pont-Lezica RF et al (2006) Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls. Plant Methods 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  13. Assor C, Quemener B, Vigouroux J et al (2013) Fractionation and structural characterization of LiCl-DMSO soluble hemicelluloses from tomato. Carbohydr Polym 94:46–55

    Article  CAS  PubMed  Google Scholar 

  14. Nguema-Ona E, Moore J, Fagerström A et al (2012) Profiling the main cell wall polysaccharides of tobacco leaves leaves using high-throughput and fractionation techniques. Carbohydr Polym 88:939–949

    Article  CAS  Google Scholar 

  15. Jamet E, Albenne C, Boudart G et al (2008) Recent advances in plant cell wall proteomics. Proteomics 8:893–908

    Article  CAS  PubMed  Google Scholar 

  16. Borderies G, Jamet E, Lafitte C et al (2003) Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis. Electrophoresis 24:3421–3432

    Article  CAS  PubMed  Google Scholar 

  17. Kwon H-K, Yokoyama R, Nishitani K (2005) A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells. Plant Cell Physiol 46:843–857

    Article  CAS  PubMed  Google Scholar 

  18. Boudart G, Jamet E, Rossignol M et al (2005) Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 5:212–221

    Article  CAS  PubMed  Google Scholar 

  19. Haslam RP, Downie AL, Raventon M et al (2003) The assessment of enriched apoplastic extracts using proteomic approaches. Ann Appl Biol 143:81–91

    Article  CAS  Google Scholar 

  20. Ahmad A, Pereira E, Conley A et al (2010) Green biofactories: recombinant protein production in plants. Recent Pat Biotechnol 4:242–259

    Article  CAS  PubMed  Google Scholar 

  21. Price C (1974) Plant cell fractionation. Method Enzymol 31:501–519

    Article  CAS  Google Scholar 

  22. Gibson L (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goldberg R (1977) On possible connections between auxin induced growth and cell wall glucanase activities. Plant Sci Lett 8:233–242

    Article  CAS  Google Scholar 

  24. Douché T, San Clemente H, Burlat V et al (2013) Brachypodium distachyon as a model plant toward improved biofuel crops: search for secreted proteins involved in biogenesis and disassembly of cell wall polymers. Proteomics 13:2438–2454

    Article  PubMed  Google Scholar 

  25. Irshad M, Canut H, Borderies G et al (2008) A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biol 8:94

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nguyen-Kim et al. initially part of his PhD thesis work have been included in: Nguyen-Kim H, San Clemente H, Balliau T, Zivy M, Dunand C, Albenne C and Jamet E (2016) Arabidopsis thaliana root cell wall proteomics: increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences. Proteomics, 16: 491–503.

    Google Scholar 

  27. Merah et al.initially part of her Master work (2012) have been included in: Francin-Allami M, Merah K, Albenne C, Rogniaux H, Pavlovic M, Lollier V, Sibout R, Guillon F, Jamet E and Larré C (2015) Cell wall proteomic of Brachypodium distachyon grains: A focus on cell wall remodeling proteins. Proteomics, 15: 2296–2306.

    Google Scholar 

  28. Charmont S, Jamet E, Pont-Lezica R et al (2005) Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds. Phytochemistry 66:453–461

    Article  CAS  PubMed  Google Scholar 

  29. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  30. Loomis W (1974) Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Methods Enzymol 31:528–545

    Article  CAS  PubMed  Google Scholar 

  31. Ramagli L, Rodriguez L (1985) Quantitation of microgram amounts of protein in two-dimensional polyacrylamide electrophoresis sample buffer. Electrophoresis 6:559–563

    Article  CAS  Google Scholar 

  32. San Clemente H, Pont-Lezica R, Jamet E (2009) Bioinformatics as a tool for assessing the quality of sub-cellular proteomic strategies and inferring functions of proteins: plant cell wall proteomics as a test case. Bioinform Biol Insights 3:15–28

    CAS  Google Scholar 

  33. Laemmli UK (1970) Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  34. Kato N, Pontier D, Lam E (2002) Spectral profiling for the simultaneous observation of four distinct fluorescent proteins and detection of protein-protein interaction via fluorescence resonance energy transfer in tobacco leaf nuclei. Plant Physiol 129:931–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Day A, Fénart S, Neutelings G et al (2013) Identification of cell wall proteins in the flax (Linum usitatissimum) stem. Proteomics 13:812–825

    Article  CAS  PubMed  Google Scholar 

  36. Lim S, Chisholm K, Coffin R et al (2012) Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation. J Proteome Res 11:2594–2601

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Université Paul Sabatier (Toulouse III, France) and CNRS for support. They also wish to thank Carole Pichereaux for providing access to MALDI-TOF MS analysis at the Proteomics platform of GenoToul (http://proteomique.genotoul.fr/). Kahina Merah, Huan Nguyen-Kim, and Vincent Hervé are acknowledged for communication of unpublished data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Jamet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Canut, H., Albenne, C., Jamet, E. (2017). Isolation of the Cell Wall. In: Taylor, N., Millar, A. (eds) Isolation of Plant Organelles and Structures. Methods in Molecular Biology, vol 1511. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6533-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6533-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6531-1

  • Online ISBN: 978-1-4939-6533-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics