Skip to main content
Log in

Plant molybdoenzymes and their response to stress

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Molybdenum-containing enzymes catalyse basic reactions in the nitrogen, sulphur and carbon metabolism. Mo-enzymes contain at their catalytic sites an organometallic structure termed the molybdenum cofactor or Moco. In higher plants, Moco is incorporated into the apoproteins of four enzymes: nitrate reductase (EC 1.6.6.1-3; NR), xanthine dehydrogenase (EC 1.1.1.204; XDH), aldehyde oxidase (EC 1.2.3.1; AO) and sulphite oxidase (EC1.8.3.1; SO). Molybdoenzymes in plants are key enzymes in nitrate assimilation, purine metabolism, hormone biosynthesis, and most probably in sulphite detoxification. They are considered to be involved in stress acclimation processes and, therefore, elucidation of the mechanisms of their response to environmental stress conditions is of agricultural importance for the improvement of plant stress tolerance. Here we would like to give a brief functional and biochemical characteristic of the four plant molybdoenzymes and to focus mainly on their sensitivity to environmental stress factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

AO:

aldehyde oxidase

Moco:

molybdenum cofactor

NR:

nitrate reductase

SO:

sulphite oxidase

XDH:

xanthine dehydrogenase

XO:

xanthine oxidase

References

  • Akaba S., Leydecker M.T., Moureaux T., Oritani T., Koshiba T. 1998. Aldehyde oxidase in wild type and aba1 mutant leaves of Nicotiana plumbaginifolia. Plant Cell Physiol., 39: 1281–1286.

    CAS  Google Scholar 

  • Akaba S., Seo M., Dohmae N., Takio K., Sekimoto H., Kamiya Y., Furuya N., Komano T., Koshiba T. 1999. Production of homo- and hetero-dimeric isozymes from two aldehyde oxidase genes of Arabidopsis thaliana. J. Biochem., 126: 395–401.

    PubMed  CAS  Google Scholar 

  • Akaike T., Ando M., Oda T., Doi T., Ijiri S., Araki S., Maeda H. 1990. Dependence on O2-generation by xanthine oxidase in the pathogenesis of influenza virus infection in mice. J. Clin. Invest., 85: 739–745.

    Article  PubMed  CAS  Google Scholar 

  • Aslam M., Huffaker R.C., Rains D.W. 1984. Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol., 76: 321–325.

    PubMed  CAS  Google Scholar 

  • Aslam M., Travis R.L., Rains D.W., Huffaker R.C. 1996. Effect of ammonium on the regulation of nitrate and nitrite transport systems in roots of intact barley (Hordeum vulgare L.) seedlings. Planta, 200: 58–63.

    Article  CAS  Google Scholar 

  • Bachmann M., Shiraishi N., Campbell W.H., Yoo B.C., Harmon A.C., Huber S.C. 1996. Identification of Ser 543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell, 8: 505–517.

    Article  PubMed  CAS  Google Scholar 

  • Bano A., Dörffling K., Bettin D., Hahn H. 1993. Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants in drying soil. Aust. J. Plant Physiol., 20: 109–115.

    CAS  Google Scholar 

  • Barabás N.K., Omarov R.T., Erdei L., Lips S.H. 2000. Distribution of the Mo-enzymes aldehyde oxidase, xanthine dehydrogenase and nitrate reductase in maize (Zea mays L.) nodal roots as affected by nitrogen and salinity. Plant Sci., 155: 49–58.

    Article  Google Scholar 

  • Bauer S.L., Howard P.C. 1991. Kinetics and cofactor requirements for the nitroreductive metabolism of 1-nitropyrene and 3-nitrofluoranthene by rabbit liver aldehyde oxidase. Carcinogenesis, 12: 1545–1549.

    Article  PubMed  CAS  Google Scholar 

  • Becker B.F., Reinholz N., Ozcelik T., Leipert B., Gerlach E. 1989. Uric acid as radical scavenger and antioxidant in the heart. Pflug. Arch. Eur. J. Physiol., 415: 127–135.

    Article  CAS  Google Scholar 

  • Bittner F., Oreb M., Mendel RR. 2001. ABA3 is a molybdenum cofactor sufurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J. Biol. Chem., 276: 40381–40384.

    Article  PubMed  CAS  Google Scholar 

  • Botella M.A., Cruz C., Martins-Loucao M.A., Cerda A. 1993. Nitrate reductase activity in wheat seedlings as affected by NO3//NH4/+ ratio and salinity. J. Plant Physiol., 142: 531–536.

    CAS  Google Scholar 

  • Bourgeais-Chaillou P., Perez-Alfocea F., Guerrier G. 1992. Comparative effect of N-sources on growth and physiological responses of soybean exposed to NaCl-stress. J. Exp. Bot., 254: 1225–1233.

    Article  Google Scholar 

  • Campbell W.H. 1988. Nitrate reductase and its role in nitrate assimilation in plants. Physiol. Plant., 74: 214–219.

    Article  CAS  Google Scholar 

  • Campbell W.H. 1999. Nitrate reductase structure, function and regulation: Bridging gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50: 277–303.

    Article  PubMed  CAS  Google Scholar 

  • Campbell W.H., Kinghorn J.R. 1990. Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem. Sci., 15: 315–319.

    Article  PubMed  CAS  Google Scholar 

  • Cannons A.C., Solomonson L.P. 1994. Heterologous expression of functional domains of assimilatory nitrate reductase. J. Protein Chem., 13: 445–447.

    Google Scholar 

  • Cheeseman J.M. 1988. Mechanisms of salinity tolerance in plants. Plant Physiol., 87: 547–550.

    PubMed  CAS  Google Scholar 

  • Cohen H.J., BetcherLange S., Kessler D.L., Rajagopalan K.V. 1972. Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity. J. Biol. Chem., 247: 7759–7766.

    PubMed  CAS  Google Scholar 

  • Corpas F.J., de la Colina C., Sanchez-Rasero F., del Rio L.A. 1997. A role of leaf peroxisomes in the catabolism of purines. J. Plant Physiol., 151: 246–250

    CAS  Google Scholar 

  • Coughlan M.P. 1980. Molybdenum and molybdenum-containing enzymes. Pergamon Press: Oxford.

    Google Scholar 

  • Cowan A.K. 2000. Is abscisic aldehyde really the immediate precursor to stress-induced ABA? Trends Plant Sci., 5: 191–192.

    Article  PubMed  CAS  Google Scholar 

  • Cramer M.D., Lips S.H. 1995. Enriched rhizosphere CO2 concentrations can ameliorate the influence of salinity on hydroponically grown tomato plants. Physiol. Plant., 94: 425–432.

    Article  CAS  Google Scholar 

  • Crawford N.M. 1995. Nitrate: Nutrient and signal for plant growth. Plant Cell, 7: 859–868.

    Article  PubMed  CAS  Google Scholar 

  • Critchley D.J.P., Rance D.J., Beedman C. 1992. Subcellular-localization of guinea-pig hepatic molybdenum hydroxylases. Biochem. Biophys. Res. Commun., 185: 54–59.

    Article  PubMed  CAS  Google Scholar 

  • Cutler A.J., Krochko J.E. 1999. Formation and breakdown of ABA. Trends Plant Sci., 12: 472–478.

    Article  Google Scholar 

  • de la Haba P., Agüera E., Maldonado J.M. 1990. Differential effects of ammonium and tungsten on nitrate and nitrite uptake and reduction by sunflower plants. Plant Sci., 70: 21–26.

    Article  Google Scholar 

  • Datta D.B., Triplett E.W., Newcomb E.H. 1991. Localization of xanthine dehydrogenase in cowpea root nodules: implications for the interaction between cellular compartments during ureide biogenesis. Proc. Natl. Acad. Sci. USA, 88: 4700–4702.

    Article  PubMed  CAS  Google Scholar 

  • Eilers T., Schwarz G., Brinkmann H., Witt C., Richter T., Nieder J., Koch B., Hille R., Hänsch R., Mendel R.R. 2001. Identyfication and biochemical characterization of Arabidopsis thaliana sulfite oxidase. J. Biol. Chem., 276: 46989–46994.

    Article  PubMed  CAS  Google Scholar 

  • Evans H.J., Nason A. 1953. Pyridine nucleotide nitrate reductase from extracts of higher plants. Plant Physiol., 28: 233–254.

    PubMed  CAS  Google Scholar 

  • Fedorova E., Greenwood J.S., Oaks A. 1994. In-situ localization of nitrate reductase in maize roots. Planta, 194: 279–286.

    Article  CAS  Google Scholar 

  • Fridovich I. 1970. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem., 245: 4053–4057.

    PubMed  CAS  Google Scholar 

  • Gao Z., Sagi M., Lips S.H. 1996. Assimilate allocation priority as affected by nitrogen compounds in the xylem sap of tomato. Plant Physiol. Biochem., 34: 807–815.

    CAS  Google Scholar 

  • Goldbach E., Goldbach H., Wagner H., Michael G. 1975. Influence of N-deficiency on the abscisic acid content of sunflower plants. Physiol. Plant., 34: 138–140.

    Article  CAS  Google Scholar 

  • Goupil P., Loncle D., Druart N., Bellettre A., Rambour S. 1998. Influence of ABA on nitrate reductase activity and carbohydrate metabolism in chicory roots (Cichorium intybus L.). J. Exp. Bot., 49: 1855–1862.

    Article  CAS  Google Scholar 

  • Grattagliano I., Vendemiale G., SabbB C., Buonamico P., Altomare E. 1996. Oxidation of circulating proteins in alcoholics: Role of acetaldehyde and xanthine oxidase. J. Hepatol., 25: 28–36.

    Article  PubMed  CAS  Google Scholar 

  • Hall W.W., Krenitsky T.A. 1986. Aldehyde oxidase from rabbit liver: specificity toward purines and their analogs. Arch. Biochem. Biophys., 251: 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Hernández J.A., Olmos E., Corpas F.J., Sevilla F., del Río L.A. 1995. Salt-induced oxidative stress in chloroplast of pea plants. Plant Sci., 105: 151–167.

    Article  Google Scholar 

  • Hille R. 1996. The mononuclear molybdenum enzymes. Chem. Rev., 96: 2757–2816.

    Article  PubMed  CAS  Google Scholar 

  • Hirao Y., Kitamura S., Tatsumi K. 1994. Epoxide reductase activity of mammalian liver cytosols and aldehyde oxidase. Carcinogenesis, 15: 739–743.

    Article  PubMed  CAS  Google Scholar 

  • Hoff T., Frandsen G.I., Rocher A., Mundy J. 1998. Biochemical and genetic characterization of three molybdenum cofactor hydroxylases in Arabidopsis thaliana. Biochim. Biophys. Acta, 1398: 397–402.

    PubMed  CAS  Google Scholar 

  • Huang D.-Y., Ichikawa Y. 1994. Two different enzymes are primarily responsible for retinoic acid synthesis in rabbit liver cytosol. Biochem. Biophys. Res. Commun., 205: 1278–1283.

    Article  PubMed  CAS  Google Scholar 

  • Jeschke W.D., Peuke A.D., Pate J.S., Hartung W. 1997. Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J. Exp. Bot., 48: 1737–1747.

    Article  CAS  Google Scholar 

  • Johnson J.L., Wadman S.K. 1995. Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: The metabolic and molecular bases of inherited disease, ed. by C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, Mcgraw-Hill, New York: 2271–2283.

    Google Scholar 

  • Pilbeam D.J., Kirkby E.A. 1992. Some aspects of the utilization of nitrate and ammonium by plants. In: Nitrogen metabolism of plants, ed. by K. Mengel, D.J. Pilbeam, Clarendon Press, Oxford: 55–70.

    Google Scholar 

  • Kaiser W.M., Huber S.C. 1994. Posttranslational regulation of nitrate reductase in higher plants. Plant Physiol., 106: 817–821.

    PubMed  CAS  Google Scholar 

  • Kenis J.D., Rouby M.B., Edelman M.O., Silvente S.T. 1994. Inhibition of nitrate reductases by water stress and oxygen in detached oat leaves: A possible mechanism of action. J. Plant Physiol., 144: 735–739.

    CAS  Google Scholar 

  • Khan M.G. 1994. Effect of salt stress on nitrate reductase activity in some leguminous crops. Indian J. Plant Physiol., 37:185–187.

    CAS  Google Scholar 

  • Khan M.G., Silberbush M., Lips S.H. 1995. Physiological studies on salinity and nitrogen interaction in alfalfa plants: III. Nitrate reductase activity. J. Plant Nutr., 18: 2495–2500.

    CAS  Google Scholar 

  • Kisker C., Schindelin H., Rees D.C. 1997. Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu. Rev. Biochem., 66: 233–267.

    Article  PubMed  CAS  Google Scholar 

  • Koiwai H., Akaba S., Seo M., Komano T., Koshiba T. 2000. Functional expression of two Arabidopsis aldehyde oxidase in the yeast Pichia pastoris. J. Biochem., 127: 659–664.

    PubMed  CAS  Google Scholar 

  • Koshiba T., Saito E., Ono N., Yamamoto N., Sato M. 1996. Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol., 110: 781–789.

    PubMed  CAS  Google Scholar 

  • Lacy F., Gough D.A., Schmid-Schönbein G.W. 1998. Role of xanthine oxidase in hydrogen peroxide production. Free Radic. Biol. Med., 25: 720–727.

    Article  PubMed  CAS  Google Scholar 

  • Larsen K., Jochimsen B.U. 1987. Appearance of purine-catabolizing enzymes in Fix+ and Fix root nodules on soybean and effect of oxygen on the expression of the enzymes in callus tissue. Plant Physiol., 85: 452–456.

    PubMed  CAS  Google Scholar 

  • Larsson M., Larsson C.M., Whitford P.N., Clarkson D.T. 1989. Influence of osmotic stress on nitrate reductase activity in wheat (Triticum aestivum L.) and the role of abscisic acid. J. Exp. Bot., 40: 1265–1272.

    Article  CAS  Google Scholar 

  • Lee H.S., Milborrow B.V. 1997. Endogenous biosynthetic precursors of (+)-abscisic acid. V. Inhibition by tungstate and its removal by cinchonine shows that xanthoxal is oxidised by a molybdo-aldehyde oxidase. Aust. J. Plant Physiol., 24: 727–732.

    Article  CAS  Google Scholar 

  • Li Calzi M., Raviolo C., Ghibaudi E., De Gioia L., Salmona M., Cazzaniga G., Kurosaki M., Terao M., Garattini E. 1995. Purification, cDNA cloning, and tissue distribution of bovine liver aldehyde oxidase. J. Biol. Chem., 270: 31037–31045.

    Article  PubMed  CAS  Google Scholar 

  • MacKintosh C. 1992. Regulation of spinach-leaf nitrate reductase by reversible phosphorylation. Biochim. Biophys. Acta, 1137: 121–126.

    Article  PubMed  CAS  Google Scholar 

  • MacKown C.T., Volk R.J., Jackson W.A. 1982. Nitrate assimilation by decapitated corn root systems: Effects of ammonium during induction. Plant Sci. Lett., 24: 295–302.

    Article  Google Scholar 

  • Marques Y.A., Oberholzer N.J., Erismann K.H. 1983. Effects of different nitrogen sources on photosynthetic carbon metabolism in primary leaves of non-nodulate Phaseolus vulgaris L. Plant Physiol., 71: 555–561.

    PubMed  CAS  Google Scholar 

  • Marschner H. 1995. Mineral nutrition of higher plants, 2nd edn. Academic Press: London.

    Google Scholar 

  • McCord J.M. 1985. Oxygen-derived free radicals in post-ischemic tissue injury. New Engl. J. Med., 312: 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Mendel R.R., Hänsch R. 2002. Molybdoenzymes and molybdenum cofactor in plants. J. Exp. Bot., 53: 1689–1698.

    Article  PubMed  CAS  Google Scholar 

  • Mendel R.R., Kirk D.W., Wray J.L. 1985. Assay of molybdenum cofactor of barley. Phytochemistry, 8: 1631–1634.

    Article  Google Scholar 

  • Mendel R.R., Schwarz G.R. 1999. Molybdoenzymes and molybdenum cofactor in plants. Crit. Rev. Plant Sci., 18: 33–69.

    Article  CAS  Google Scholar 

  • Milborrow B.V. 2001. The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. J. Exp. Bot., 52: 1145–1164.

    Article  PubMed  CAS  Google Scholar 

  • Min X., Okada K., Brockmann B., Koshiba T., Kamiya Y. 2000. Molecular cloning and expression patterns of three putative functional aldehyde oxidase genes and isolation of two aldehyde oxidase pseudogenes in tomato. Biochim. Biophys. Acta, 1493: 337–341.

    PubMed  CAS  Google Scholar 

  • Montalbini P. 1991. Levels of ureides and enzymes of ureide synthesis in Vicia faba leaves infected by Uromyces fabae and effect of allopurinol on biotrophic fungal growth. Phytopathol. Mediterr., 30: 83–92.

    CAS  Google Scholar 

  • Montalbini P. 1992a. Inhibition of hypersensitive response by allopurinol applied to the host in the incompatible relationship between Phaseolus vulgaris and Uromyces phaseoli. J. Phytopathol., 134: 218–228.

    CAS  Google Scholar 

  • Montalbini P. 1992b. Ureides and enzymes of ureide synthesis in wheat seeds and leaves and effect of allopurinol on Puccinia recondita f.sp. tritici infection. Plant Sci., 87: 225–231.

    Article  CAS  Google Scholar 

  • Montalbini P. 1998. Purification and some properties of xanthine dehydrogenase from wheat leaves. Plant Sci., 134: 89–102.

    Article  CAS  Google Scholar 

  • Montalbini P. 2000. Xanthine dehydrogenase from leaves of leguminous plants: purification, characterization and properties of the enzyme. J. Plant Physiol., 156: 3–16.

    CAS  Google Scholar 

  • Moorhead G., Douglas P., Morrice N., Scarabel M., Aitken A., Mackintosh C. 1996. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Curr. Biol., 6: 1104–1113.

    Article  PubMed  CAS  Google Scholar 

  • Moriwaki Y., Yamamoto T., Higashino K. 1997. Distribution and pathophysiologic role of molybdenum-containing enzymes. Histol. Histopathol., 12: 513–524.

    PubMed  CAS  Google Scholar 

  • Munjal N., Sawhney S.K., Sawhney V. 1997. Activation of nitrate reductase in extracts of water stressed wheat. Phytochemistry, 45:659–665.

    Article  CAS  Google Scholar 

  • Munns R., Cramer G.R. 1996. Is coordination of leaf and root growth mediated by abscisic acid? Opinion. Plant Soil, 185: 33–49.

    Article  CAS  Google Scholar 

  • Newaz M.A., Adeeb N.N.N., Muslim N., Razak T.A., Htut N.N. 1996. Uric acid, xanthine oxidase and other risk factors of hypertension in normotensive subjects. Clin. Exp. Hypertens., 18: 1035–1050.

    PubMed  CAS  Google Scholar 

  • Nguyen J. 1986. Plant xanthine dehydrogenase: its distribution, properties and function. Physiol. Vég., 24: 263–281.

    CAS  Google Scholar 

  • Nguyen J., Feierabend J. 1978. Some properties and subcellular localization of xanthine dehydrogenase in pea leaves. Plant Sci. Lett., 13: 125–132.

    Article  CAS  Google Scholar 

  • Oaks A., Aslam M., Boesel I. 1977. Ammonium and amino acids as regulators of nitrate reductase in corn roots. Plant Physiol., 59: 391–394.

    PubMed  CAS  Google Scholar 

  • Omarov R.T., Akaba S., Koshiba T., Lips S.H. 1999. Aldehyde oxidase in roots, leaves and seeds of barley (Hordeum vulgare L.). J. Exp. Bot., 50: 63–69.

    Article  CAS  Google Scholar 

  • Omarov R., Dräger D., Tischner R., Lips H. 2003. Aldehyde oxidase isoforms and subunit composition in roots of barley as affected by ammonium and nitrate. Physiol. Plant., 117: 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Omarov R.T., Sagi M., Lips S.H. 1998. Regulation of aldehyde oxidase and nitrate reductase in roots of barley (Hordeum vulgare L.) by nitrogen source and salinity. J. Exp. Bot., 49: 897–902.

    Article  CAS  Google Scholar 

  • Ori N., Eshed Y., Pinto P., Paran I., Zamir D., Fluhr R. 1997. TAO1, a representative of the molybdenum cofactor containing hydroxylases from tomato. J. Biol. Chem., 272: 1019–1025.

    Article  PubMed  CAS  Google Scholar 

  • Ourry A., Mesle S., Boucaud J. 1992. Effects of osmotic stress (sodium chloride and polyethylene glycol) on nitrate uptake, translocation, storage and reduction in ryegrass (Lolium perenne L.). New Phytol., 120: 275–280.

    Article  CAS  Google Scholar 

  • Parks D.A., Granger D.N. 1983. Ischemia-induced vascular changes: Role of xanthine oxidase and hydroxyl radicals. Am. J. Physiol., 245: 285–289.

    Google Scholar 

  • Parry A.D., Griffiths A., Horgan R. 1992. Abscisic acid biosynthesis in roots. II. The effects of water-stress in wild-type and abscisic acid-deficient mutant (notabilis) plants of Lycopersicon esculentum Mill. Planta, 187: 192–197.

    CAS  Google Scholar 

  • Pastori G.M., del Rio L.A. 1997. Natural senescence of pea leaves: an activated oxygen-mediated function for peroxisomes. Plant Physiol., 113: 411–418.

    PubMed  CAS  Google Scholar 

  • Peden D.B., Hohman R., Brown M.E., Mason R.T., Berkebile C., Fales H.M., Kaliner M.A. 1990. Uric acid is a major antioxidant in human nasal airway secretions. Proc. Natl. Acad. Sci. USA, 87: 7638–7642.

    Article  PubMed  CAS  Google Scholar 

  • Peuke A.D., Glaab J., Kaiser W.M., Jeschke W.D. 1996. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. IV. Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment. J. Exp. Bot., 47: 377–385.

    Article  CAS  Google Scholar 

  • Pilbeam D.J., Kirkby E.A. 1992. Some aspects of the utilization of nitrate and ammonium by plants. In: Nitrogen metabolism of plants, ed. by K. Mengel, D.J. Pilbeam, Clarendon Press, Oxford: 55–70.

    Google Scholar 

  • Radi R., Rubbo H., Thomson L., Prodanov E. 1990. Luminol chemiluminescence using xanthine and hypoxanthine as xanthine oxidase substrates. Free Radic. Biol. Med., 8: 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Radin J.W. 1975. Differential regulation of nitrate reductase induction in roots and shoots of cotton plants. Plant Physiol., 55: 178–182.

    PubMed  CAS  Google Scholar 

  • Rajagopalan K.V., Johnson J.L. 1992. The pterin molybdenum cofactors. J. Biol. Chem., 267: 10199–10202.

    PubMed  CAS  Google Scholar 

  • Rao L.V.M., Datta N., Hahadevan M., Guha-Mukherjee S., Sopory S.K. 1984. Influence of cytokinin and phytochrome on nitrate reductase activity in etiolated leaves of maize. Phytochemistry, 23: 1875–1879.

    Article  CAS  Google Scholar 

  • Redinbaugh M.G., Campbell W.H. 1981. Purification and characterization of NAD(P)H:nitrate reductase and NADH:nitrate reductase from corn roots. Plant Physiol., 68: 115–120.

    PubMed  CAS  Google Scholar 

  • Redinbaugh M.G., Campbell W.H. 1991. Higher plant responses to environmental nitrate. Physiol. Plant., 82: 640–650.

    Article  CAS  Google Scholar 

  • Richharia A., Shah K., Dubey R.S. 1997. Nitrate reductase from rice seedlings: Partial purification, characterization and the effects of in situ and in vitro NaCl salinity. J. Plant Physiol., 151: 316–322.

    CAS  Google Scholar 

  • Sagi M., Fluhr R., Lips S.H. 1999. Aldehyde oxidase and xanthine dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol., 120: 1–8.

    Article  Google Scholar 

  • Sagi M., Lips S.H. 1998. The levels of nitrate reductase and MoCo in annual ryegrass as affected by nitrate and ammonium nutrition. Plant Sci., 135: 17–24.

    Article  CAS  Google Scholar 

  • Sagi M., Omarov R.T., Lips S.H. 1998. The Mo-hydroxylases xanthine dehydrogenase and aldehyde oxidase in ryegrass as affected by nitrogen and salinity. Plant Sci., 135: 125–135.

    Article  CAS  Google Scholar 

  • Sagi M., Savidov N.A., L’vov N.P., Lips S.H. 1997. Nitrate reductase and molybdenum cofactor in annual ryegrass as affected by salinity and nitrogen source. Physiol. Plant., 99: 546–553.

    Article  CAS  Google Scholar 

  • Sagi M., Scazzocchio C., Fluhr R. 2002. The abscence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. Plant J., 31: 305–317.

    Article  PubMed  CAS  Google Scholar 

  • Samuelson M.E., Campbell W.H., Larsson C.M. 1995. The influence of cytokinins in nitrate regulation of nitrate reductase activity and expression in barley. Physiol. Plant., 93: 533–539.

    Article  CAS  Google Scholar 

  • Sauer P., Frébortová J., Sebela M., Galuszka P., Jacobsen S., Pec P., Frebort I. 2002. Xanthine dehydrogenase of pea seedlings: a member of the plant molybdenym oxidoreductase family. Plant Physiol. Biochem., 40: 393–400.

    Article  CAS  Google Scholar 

  • Schwartz S.H., Léon-Kloosterziel K.M., Koornneef M., Zeevaart J.A.D. 1997. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol., 114: 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Sekimoto H., Seo M., Dohmae N., Takio K., Kamiya Y., Koshiba T. 1997. Cloning and molecular characterization of plant aldehyde oxidase. J. Biol. Chem., 272: 15280–15285.

    Article  PubMed  CAS  Google Scholar 

  • Sekimoto H., Seo M., Kawakami N., Komano T., Desloire S., Liotenberg S., Marion-Poll A., Caboche M., Kamiya Y., Koshiba T. 1998. Molecular cloning and characterization of aldehyde oxidase in Arabidopsis thaliana. Plant Cell Physiol., 39: 433–442.

    PubMed  CAS  Google Scholar 

  • Seo M., Akaba S., Oritani T., Delarue M., Bellini C., Caboche M., Koshiba T. 1998. Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol., 116: 687–693.

    Article  PubMed  CAS  Google Scholar 

  • Seo M., Koshiba T. 2002. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci., 7: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Seo M., Koiwai H., Akaba S., Komano T., Oritani T., Kamiya Y., Koshiba T. 2000a. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J., 23: 481–488.

    Article  CAS  Google Scholar 

  • Seo M., Peeters A.J., Koiwai H., Oritani T., Marion-Poll A., Zeevaart J.A.D., Koornneef M., Kamiya Y., Koshiba T. 2000b. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. USA, 97: 12908–12913.

    Article  PubMed  CAS  Google Scholar 

  • Shaner D.L., Boyer J.S. 1976. Nitrate reductase activity in maize (Zea mays L.) leaves. II. Regulation by nitrate flux at low leaf water potential. Plant Physiol., 58: 505–509.

    PubMed  CAS  Google Scholar 

  • Shashidhar V.R., Prasad T.G., Sudharshan L. 1996. Hormone signals from roots to shoots of sunflower (Helianthus annuus L.). Moderate soil drying increases delivery of abscisic acid and depresses delivery of cytokinins in xylem sap. Ann. Bot., 78: 151–155.

    Article  CAS  Google Scholar 

  • Sindhu R.K., Walton D.C. 1987. Conversion of xanthoxin to abscisic acid by cell-free preparation from bean leaves. Plant Physiol., 85: 916–921.

    PubMed  CAS  Google Scholar 

  • Sindhu R.K., Walton D.C. 1988. Xanthoxin metabolism in cell-free prepartions from wild type and wilty mutants of tomato. Plant Physiol., 88: 178–182.

    PubMed  CAS  Google Scholar 

  • Sivasankar S., Oaks A. 1995. Regulation of nitrate reductase during early seedling growth. A role for asparagine and glutamine. Plant Physiol., 107: 1225–1231.

    PubMed  CAS  Google Scholar 

  • Solomonson L.P., Barber M.J. 1990. Assimilatory nitrate reductase: Functional properties and regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41: 225–253.

    Article  CAS  Google Scholar 

  • Sprent J.I. 1980. Root nodule anatomy, type of export product and evolutionary origin of some Leguminosae. Plant Cell Environ., 3: 35–43.

    CAS  Google Scholar 

  • Srivastava H.S. 1992. Multiple functions and forms of higher plant nitrate reductase. Phytochemistry, 31: 2941–2947.

    Article  CAS  Google Scholar 

  • Taylor I.B., Linforth R.S.T., Al-Naieb R.J., Bowman W.R., Marples B.A. 1988. The wilty tomato mutants flacca and sitiens are impaired in the oxidation of ABA-aldehyde to ABA. Plant Cell Environ., 11: 739–745.

    Article  CAS  Google Scholar 

  • Teng R.-J., Ye Y.-Z., Parks D.A., Beckman J.S. 2002. Urate produced during hypoxia protects heart proteins from peroxynitrite-mediated protein nitration. Free Radic. Biol. Med., 33: 1243–1249.

    Article  PubMed  CAS  Google Scholar 

  • Terao M., Kurosaki M., Demontis S., Zanotta S., Garattini E. 1998. Isolation and characterization of the human aldehyde oxidase gene: conservation of intron/exon boundaries with the xanthine oxidoreductase gene indicates a common origin. Biochem. J., 332: 383–393.

    PubMed  CAS  Google Scholar 

  • Tomita S., Tsujita M., Ichikawa Y. 1993. Retinal oxidase is identical to aldehyde oxidase. FEBS Lett., 336: 272–274.

    Article  PubMed  CAS  Google Scholar 

  • Triplett E.W., Blevins D.G., Randall D.D. 1980. Allantoic acid synthesis in soybean root nodule cytosol via xanthine dehydrogenase. Plant Physiol., 65: 1203–1206.

    PubMed  CAS  Google Scholar 

  • Triplett E.W., Blevins D.G., Randall D.D. 1982. Purification and properties of soybean nodule xanthine dehydrogenase. Arch. Biochem. Biophys., 219: 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Tsurusaki K., Takeda K., Sakurai N. 1997. Conversion of indole-3-acetaldehyde to indole-3-acetic acid in cell-wall fraction of barley (Hordeum vulgare) seedlings. Plant Cell Physiol., 38: 268–273.

    CAS  Google Scholar 

  • Vaughn K.C., Campbell W.H. 1988. Immunogold localization of nitrate reductase in maize leaves. Plant Physiol., 88: 1354–1357.

    PubMed  CAS  Google Scholar 

  • Walker-Simmons M., Kudrna D.A., Warner R.L. 1989. Reduced accumulation of ABA during water stress in a molybdenum cofactor mutant of barley. Plant Physiol., 90: 728–733.

    PubMed  CAS  Google Scholar 

  • Warner R.L., Narayanan K.R., Kleinhofs A. 1987. Inheritance and expression of NAD(P)H nitrate reductase in barley. Theor. Appl. Genet., 74: 714–717.

    Article  CAS  Google Scholar 

  • Wootton J.C., Nicholson R.E., Cock J.M., Walters D.E., Burke J.F., Doyle W.A., Bray R.C. 1991. Enzymes depending on the pterin molybdenum cofactor: sequence families, spectroscopic properties and possible cofactor-binding domains. Biochim. Biophys. Acta, 1057: 157–185.

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara S., Tatsumi K. 1986. Kinetic and inhibition studies on reduction of diphenyl sulfoxide by guinea pig liver aldehyde oxidase. Arch. Biochem. Biophys., 249: 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Zdunek E. 2002. Mo-enzymes from leaves and roots of pea plants (Pisum sativum L.) as affected by salinity and different N-source. Doctoral dissertation, Warsaw Agricultural University, Warsaw, Poland.

    Google Scholar 

  • Zdunek E, Lips S.H. 2001. Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions. J. Exp. Bot., 52: 1269–1276.

    Article  PubMed  CAS  Google Scholar 

  • Zdunek-Zastocka E., Lips S.H. 2003. Is xanthine dehydrogenase involved in response of pea plants (Pisum sativum L.) to salinity or ammonium treatment? Acta Physiol. Plant., 25: 395–401.

    CAS  Google Scholar 

  • Zeevaart J.A.D., Boyer G.L. 1984. Accumulation and transport of abscisic acid and its metabolites in Ricinus and Xanthium. Plant Physiol., 74: 934–939.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J., Davies W.J. 1989. Sequential response of whole plant water relations to prolonged soil drying and the involvement of xylem sap ABA in the regulation of stomatal behaviour of sunflower plants. New Phytol., 113: 167–174.

    Article  CAS  Google Scholar 

  • Zhang J., Zhang X. 1994. Can early wilting of old leaves account for much of the ABA accumulation in flooded pea plants? J. Exp. Bot., 278: 1335–1342.

    Article  Google Scholar 

  • Xiong L., Ishitani M., Lee H., Zhu J.-K. 2001. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell, 13: 2063–2083.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edyta Zdunek-Zastocka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zdunek-Zastocka, E., Lips, H.S. Plant molybdoenzymes and their response to stress. Acta Physiol Plant 25, 437–452 (2003). https://doi.org/10.1007/s11738-003-0026-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-003-0026-z

Key words

Navigation