Skip to main content
Log in

Activity of salicylic acid on the growth and biochemism of Chlorella vulgaris Beijerinck

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the influence of salicylic acid (SA) on the growth and changes of nucleic acids, protein, photosynthetic pigments, sugar content and photosynthesis levels in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). The most significant changes in the content of nucleic acids and proteins was observed at the concentration 10−4 M SA between 8 and 12 day of cultivation. This concentration of SA increased the number of cells (about 40 %) and content of proteins (about 60 %) and its secretion to the medium. The slight stimulation of protein secretion occurred on the 12th day of cultivation at concentration 10−4 M, while in the range of 10−5 M to 10−6 M the protein secretion was inhibited. SA also stimulated the content of nucleic acids, especially RNA by 20–60 %, compared with the control. The most stimulating influence upon the contents of chlorophylls a and b (50–70 %), total carotenoids (25–57 %), sugar (27–41 %) and intensity of net photosynthesis (18–33 %) was found at 10−4 M of SA. At the concentration of 10−6 M SA the slight inhibition of growth and biochemical activity of the algae was recorded at the first days of cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PAR:

photosynthetically active radiation

PR:

pathogenesis-related

SA:

salicyclic acid

SAR:

systemic acquired resistance

RuBP:

ribulose-1,5-bisphosphate

TMV:

tobacco mosaic virus

References

  • Bajguz A., Czerpak R. 1998. Physiological and biochemical role of brassinosteroids and their structure-activity relationship of brassinosteroids in the green alga Chlorella vulgaris. J. Plant Growth Regul., 17: 131–139.

    Article  CAS  Google Scholar 

  • Burkhanova E.A., Fedina A.B., Kulaeva O.N. 1999. Effect of salicylic acid and (2′–5′)-oligoadenylates on protein synthesis in tobacco leaves under heat shock conditions: a comparative study. Russ. J. Plant Physiol., 46: 11–16.

    CAS  Google Scholar 

  • Burkiewicz K., Kentzer T. 1984. Gibberellins as extracelullar products of algae. Wiss. Z. Univ. Rostock Naturwiss. Reihe, 33: 29–30.

    Google Scholar 

  • Czerpak R., Bajguz A. 1993. Effect of auxins and cytokinins on protein and saccharides extracelullar excretion in Chlorella pyrenoidosa. Pol. Arch. Hydrobiol., 40: 249–254.

    CAS  Google Scholar 

  • Czerpak R., Bajguz A. 1998. Physiological and metabolical activity of salicylic acid in plants. Kosmos, 47: 83–93 [in Polish, Summ in English].

    CAS  Google Scholar 

  • Czerpak R., Bajguz A., Bialecka B., Wierzcholowska L.E., Wolanska M.M. 1994. Effect of auxin precursors and chemical analogues on the growth and chemical composition in Chlorella pyrenoidosa Chick. Acta Soc. Bot. Pol., 63: 279–286.

    CAS  Google Scholar 

  • Durner J., Shah J., Klessig D.F. 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci., 2: 266–274.

    Article  Google Scholar 

  • Enyedi A.J., Yalpani N., Silverman P., Raskin I. 1992. Signal molecules in systemic plant resistance to pathogens and pests. Cell, 70: 879–886.

    Article  PubMed  CAS  Google Scholar 

  • Fogg G.E. 1973. Extracelullar products of algae in freshwater. Arch. Hydrobiol., 5: 1–25.

    Google Scholar 

  • Fogg G.E. 1983. The ecological significance of extracelullar products of phytoplankton photosynthesis. Bot. Mar., 26: 3–14.

    Article  CAS  Google Scholar 

  • Helleburt J.A. 1974. Extracellular products algal physiology and biochemistry. Bot. Monogr., 10: 838–846.

    Google Scholar 

  • Khurana J.P., Maheshwari S.C. 1980. Some effect of salicylic acid on growth and flowering to Spirodella polyrrhiza SP20. Plant Cell. Physiol., 21: 923–927.

    CAS  Google Scholar 

  • Klessig D.F., Malamy J. 1994. The salicylic acid signal in plants. Plant Mol. Biol., 26: 1439–1458.

    Article  PubMed  CAS  Google Scholar 

  • Kozłowska B., Maleszewski S. 1994. Low level of inorganic orthophosphate in growth medium increases metabolism and excretion of glycolate by Chlorella vulgaris cells cultivated under air conditions. Plant Physiol. Biochem., 32: 717–721.

    Google Scholar 

  • Larson L.J. 1989. Effect of phenolic acid on growth of Chlorella pyrenoidosa. Hydrobiol., 183: 217–222.

    Article  CAS  Google Scholar 

  • Lee T.T., Skoog K. 1965. Effect of substituted phenols on bud formation and growth of tobacco tissue culture. Physiol. Plant., 18: 386–402.

    Article  CAS  Google Scholar 

  • Lewin L.R. (Ed) 1962. Physiology and Biochemistry of Algae Academic Press, New York

    Google Scholar 

  • Lloyd N.D.H., Canvin D.T., Culver D.A. 1977. Photosynthesis and photorespiration in algae. Plant Physiol., 59: 936–940.

    PubMed  CAS  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Molina A., Görlach J., Volrath S., Ryals J. 1999. Wheat genes encoding two types of PR-1 proteins are pathogen inducible, but do not respond to activators of systemic acquired resistance. Molec. Plant-Microbe Interact., 12: 53–58.

    Article  CAS  Google Scholar 

  • Murphy A.M., Chivasa S., Singh D.P., Carr J.P. 1999. Salicylic acid-induced resistance to viruses and other pathogens: a parting of the ways? Trends Plant Sci., 4: 155–160.

    Article  PubMed  Google Scholar 

  • Namada K.K., Kumars S., Sood V. 1976. Effect of gibberellic acid and some phenols on flowering of Impatiens balsamica, a qualitative short-day plant. Physiol. Plant., 38: 53–56.

    Article  Google Scholar 

  • Pancheva T.V., Popova L.P., Uzunova A.N. 1996. Effects of salicylic acid on growth and photosynthesis in barley plants. J. Plant Physiol., 149: 57–63.

    CAS  Google Scholar 

  • Pierpoint W.S. 1994. Salicylic acid and its derivatives in plants: medicines, metabolites and messenger molecules. Adv. Bot. Res., 20: 163–233.

    Article  CAS  Google Scholar 

  • Pietrese C.M.J., van Loon L.C. 1999. Salicylic acid-independent plant defence pathways. Trends Plant Sci., 4: 52–58.

    Article  Google Scholar 

  • Pirson A., Lorenzen H. 1966. Synchronized dividing algae. Annu. Rev. Plant Physiol., 17: 439–458.

    Article  Google Scholar 

  • Rao M.V., Paliyath C., Ormrod D.P., Murr D.P., Watkins C.P. 1997. Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 metabolizing enzymes. Plant Physiol., 115: 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Raskin I. 1992a. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 43: 439–463.

    Article  CAS  Google Scholar 

  • Raskin I. 1992b. Salicylate, a new plant hormone. Plant Physiol. 99: 799–803.

    Article  PubMed  CAS  Google Scholar 

  • Raskin I. 1995. Salicylic acid. In: Plant Hormones Physiology, Biochemistry and Molecular Biology, ed. by Davies P.J. Kluwer Acad Publ, Dordrecht - Boston -London: 188–205.

    Google Scholar 

  • Ray S.D. 1986. GA, ABA, phenol interaction and control of growth: phenolic compounds as effective modulators of GA-ABA interaction in radish seedlings. Biol. Plant., 28: 361–369.

    CAS  Google Scholar 

  • Rhoads D.M., McIntosh L. 1992. Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell., 4: 1131–1139.

    Article  PubMed  CAS  Google Scholar 

  • Rogers S.O., Bendich A.J. 1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissue. Plant Mol. Biol., 5: 69–76.

    Article  CAS  Google Scholar 

  • Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular cloning. A laboratory manual. CSH Lab Press.

  • Sayegh A., Greppin H. 1973. Chlorella rubescens Ch Essai de synchronisation et mise en evidence de rythmes endogenes. Arch. Sci. Geneve, 8: 6–18.

    Google Scholar 

  • Somogyi M. 1952. Notes on sugar determination. J. Biol. Chem., 195: 19–23.

    CAS  Google Scholar 

  • Stewart W.D.P. 1974. Algal Physiology and Biochemistry, Blackwell Scientific Publisher, Oxford.

    Google Scholar 

  • Ward E.R., Uknes S.J., Williams S.C., Dincher S.S., Wiederhold D.L., Alexander D.C., Ahl-Goy P., Métraux J.P., Ryals J.A. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell, 3: 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y. 1980. A study of excretion and extracelullar products of natural phytoplankton in Lake Nakanuma. Japan Intern. Rev. Ges. Hydrobiol., 65: 809–8341.

    Article  Google Scholar 

  • Wellburn A.R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., 144: 307–313.

    CAS  Google Scholar 

  • Wobbe K.K., Klessig D.F. 1996. Salicylic acid — an important signal in plants. In: Signal Transduction in Plant Growth and Development, ed. By Verna D.P.S. Series: Plant Gene Research, Springer-Verlag: 167–196.

  • Zhang S., Klessig D.F. 1997. Salicylic acid activates a 48 kDa MAP kinase in tobacco. Plant Cell, 9: 809–824.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czerpak, R., Bajguz, A., Gromek, M. et al. Activity of salicylic acid on the growth and biochemism of Chlorella vulgaris Beijerinck. Acta Physiol Plant 24, 45–52 (2002). https://doi.org/10.1007/s11738-002-0020-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-002-0020-x

Key words

Navigation